Shri. B. V. V. Sangha's Basaveshwar Engineering College, Bagalkote

Vision and Mission of the Institute

VISION

To be recognized as a premier technical institute committed to developing exemplary professionals, offering research based innovative solutions and inspiring inventions for holistic socio economic development.

MISSION

- 1) To pursue excellence through student centric dynamic teaching-learning processes, encouraging freedom of inquiry and openness to change
- 2) To carry out innovative cutting edge research and transfer technology for industrial and societal needs
- 3) To imbibe moral and ethical values and develop compassionate, humane professionals

BVVS

Basaveshwar Engineering College, Bagalkote Department of Electronics and Communication Engineering

Vision, Mission Statements and Values

Vision

To achieve excellence in electronics and communication engineering through quality education and research for developing competent professionals.

Mission

- 1. Foster a dynamic teaching and learning process.
- 2. Encourage research through innovation and collaboration.
- 3. Imbibe moral, ethical values and social responsibilities.

Values

The values of the department are

- 1. Work is Worship
- 2. Ethics and Integrity
- 3. Empathy and Compassion
- 4. Indian Ethos
- 5. Mutual Respect

BVVS

Basaveshwar Engineering College, Bagalkote

Department of Electronics and Communication Engineering

SWOC Analysis

S:Strength:

- 1. Infrastructure
 - (i.) ICT enabled classrooms/seminar hall with good ambience.
 - (ii.) Well equipped laboratories to cater curriculum requirements.
 - (iii.) Department library with good number of titles and volumes.
 - (iv.) Scope for academic extension programmes.
- 2. Faculty
 - (i.) 75% of faculty with Ph.D.
 - (ii.) Faculty with minimum of 12 years teaching experience.
 - (iii.) Faculty retention ratio is 100 %.
- 3. Students
 - (i.) Students with academic and competitive bent of mind.
 - (ii.) 75% of the students are placed in reputed industries.
 - (iii.) 10% to 15% of the students are registering for B.E. Honours Degree.

4. Curriculum

- (i.) Research and industry oriented adaptive curriculum.
- (ii.) Curriculum with integrated courses.

5. Alumni

- (i.) Alumni works in reputed organizations across the world.
- (ii.) Alumni interactions with students and faculty to bridge the gap between campus and corporate.

W:Weakness:

- 1. IPR competencies are inadequate.
- 2. Relatively less number of memberships in professional bodies.
- 3. Limited collaborative activities.
- 4. Less number of inter-disciplinary courses and projects.
- 5. Less number of industry supported laboratories/courses.
- 6. Inadequate number of funded projects.
- 7. Less scope for co-curricular and cultural activities.

O:Opportunities:

- 1. Establishment of Distant Learning Center (DLC) using existing resources.
- 2. Participation in collaborative projects/ research work with allied institutions.
- 3. Fostering alumni participation in academics and placement activities.
- 4. Establishment of Skilling Centers for students.
- 5. Faculty exchange programs with academia and industry.
- 6. Organizing conferences.
- 7. Facilitating incubation centers for alumni.
- 8. Scope for academic extension programmes
- 9. Training on computer usage/ programming languages for general public.
- 10. Enhancing consultancy activities.

C:Challenges:

- 1. To incorporate experiential teaching learning process.
- 2. Adapting curriculum to future industry needs.
- 3. Fostering collaboration to enhance research, innovation and entrepreneurship activities.
- 4. Attracting diversified students.
- 5. Strategies to strengthen the placement activities for higher packages and core companies.
- 6. Secure additional research grants and consultancy opportunities.
- 7. Enhance quality publications and file patents.

POs

- a) **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- b) **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- c) **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- d) **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- e) **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- f) The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- g) **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- h) **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- i) **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- j) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- k) Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 1) **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSOs

- (1) Analyze and design systems for Electronics, Communication, and Signal Processing applications.
- (2) Use domain specific tools for design, analysis, synthesis, and Validation of VLSI and embedded systems.
- (3) Demonstrate the conceptual knowledge with respect to architecture, design analysis and simulation of computer networking and applications.

Program Educational Objectives (PEOs)

In order to prepare the students to excel in industry and higher education, the following Program Educational Objectives (PEOs) are framed.

PEO1: To prepare students to excel in postgraduate programmes or to succeed in industry/technical profession through global, rigorous education.

PEO2: To provide students with a solid foundation in mathematical, scientific, electronics and communication engineering, interdisciplinary subjects necessary to formulate, solve, and analyze engineering challenges.

PEO3: To train students with good scientific and engineering breadth so as to comprehend, analyze, design and create novel products and solutions for the real-life problems.

PEO4: To inculcate in students professional and ethical attitudes, academic environment, aware of excellence, effective communication skills, leadership and managerial skills, ethical codes and guidelines and the lifelong learning needed for a successful professional career.

PEO5: To strengthen the knowledge of students in multi-disciplinary areas of engineering. To inculcate research attitude among students to meet the societal needs.

Basaveshwar Engineering College (Autonomous), Bagalkote

Department of Electronics and Communication Engineering

Credit split-up for Undergraduate Program

Break-up of Credits for B.E (Common to all Branches)

Applicable to 2021-22 (Regular) and 2022-23 (Lateral Entry) Batch - 160 credits

Sem.	BSC	ESC	HSSM	AEC	PCC	PEC	OEC	Proj.	Int.	Tech. Sem.	Mand. (UHV)	Total
1.	07	10	02	01								20
2.	07	09	02	02								20
3.	03		01	01 (Dept.)	14						01	20
4.	03		01		14				02			20
5.			01	02 (SS)	10	03	03		03			22
6.	03				08	03	06	02				22
7.			03		03	06		08				20
8.				03 (MOOCS) 02 (Dept.)					10	01		16
Tot.	23	19	10	11	49	12	09	10	15	01	01	160

SI.	Category	Subject Code		Cradita	HOU	rs/ w	/EEK	EXAM	INATION	MARKS
No			Subject lifte	Credits	L	Т	Ρ	CIE	SEE	Total
1.	BSC	21UMA101C	Engineering Mathematics - I	03	3	0	0	50	50	100
2.	BSC	21UPH102C	Engineering Physics	03	3	0	0	50	50	100
3.	ESC	21UEE105C	Basic Electrical Engineering	03	3	0	0	50	50	100
4.	ESC	22UEC104C	Basic Electronics	03	3	0	0	50	50	100
5.	ESC	21UCS103C	Principles of Programming with C	03	3	0	0	50	50	100
6.	BSC	21UPH108L	Engineering Physics Laboratory	01	0	0	2	50	50	100
7.	ESC	21UCS109L	Programming Practice using C	01	0	0	2	50	50	100
8.	HSSM	21UHS106C	Communicative English	02	2	0	0	50	50	100
9.	AEC	21UHS107C	Scientific Foundations of Health	01	2	0	0	50	50	100
Tota	al			20	18	0	4	450	450	900

I Semester B.E. (Common to all Branches)

SI.	Category	Subject Code		Creatite	HOU	rs/ w	/EEK	EXAM	INATION	MARKS
No			Subject little	Credits	L	Т	Ρ	CIE	SEE	Total
1.	BSC	21UMA201C	Engineering Mathematics - II	03	3	0	0	50	50	100
2.	BSC	21UCH210C	Engineering Chemistry	03	3	0	0	50	50	100
3.	ESC	21UME212C	Elements of Mechanical Engineering	03	2	2	0	50	50	100
4.	ESC	21UCV211C	Engineering Mechanics	03	3	0	0	50	50	100
5.	ESC	21UME213L	Computer Aided Engineering Drawing	03	2	0	2	50	50	100
6.	BSC	21UCH214L	Engineering Chemistry Laboratory	01	0	0	2	50	50	100
7.	HSSM	21UHS206C	Professional Writing Skills in English	02	2	0	0	50	50	100
8.	AEC	21UHS215C	Innovation and Design Thinking	02	1	0	2	50	50	100
Tota	ıl			20	16	2	6	400	400	800

II Semester B.E. (Common to all Branches)

III Semester	B.E.	(E &	CE)
		1	,

SI. No	Category	Subject Code	Subject Title	Credits	HO W	URS/ EEK	/	EX	AMINAT MARKS	TION
					L	Т	Р	CIE	SEE	Total
1.	BSC	21UMA301C	Numerical Techniques and Integral Transforms	03	3	0	0	50	50	100
2.	PCC	21UEC302C	Electronic Devices and Circuits	03	3	0	0	50	50	100
3.	РСС	21UEC303C	Digital Electronics and Logic Design	03	3	0	0	50	50	100
4.	PCC	21UEC304C	Network Analysis	03	3	0	0	50	50	100
5.	РСС	21UEC305C	Data Structures using "C"	03	3	0	0	50	50	100
6.	РСС	21UEC306L	Electronic Devices and Circuits Laboratory	01	0	0	3	50	50	100
7.	PCC	21UEC307L	Digital Electronics Laboratory	01	0	0	3	50	50	100
8.	AEC	21UEC308C	Higher Programming Paradigm	01	0	0	3	50	50	100
9	UHV	21UHS324C	Universal Human Values - II	01	1	0	0	50	50	100
10	HSSM	21UHS321C	Constitution of India	01	1	0	0	50	50	100
11	PCC	21UMA300M	Bridge Course Mathematics – I*		3*	0	0	50*	50*	100*
Tota	I			20	17 20*	0	9	500 550*	500 550*	1000 1100*

IV Semester B.E. (E & CE)

SI.	Category	Subject Code	Subject Title	Credits	HOUR	s/ w	'EEK	EXAMI	NATION	MARKS
No					L	Т	Ρ	CIE	SEE	Total
1.	BSC	21UMA401C	Statistics and Probability Distributions	03	3	0	0	50	50	100
2.	РСС	21UEC402C	Signals and Systems	03	2	2	0	50	50	100
3.	РСС	21UEC403C	Linear Integrated Circuits	03	3	0	0	50	50	100
4.	РСС	21UEC404C	Analog and Digital Communication	03	3	0	0	50	50	100
5.	РСС	21UEC405C	Microcontrollers	03	3	0	0			
6.	РСС	21UEC406L	Communication Engineering Laboratory	01	0	0	3	50	50	100
7.	РСС	21UEC407L	Microcontroller Laboratory	01	0	0	3	50	50	100
8.	INT	21UEC408I	Internship - I	02				100	00	100
9.	HSSM	21UHS422C 21UHS423C	Sanskrutika Kannada Balake Kannada	01	1	0	0	50	50	100
10.	РСС	21UMA400M	Bridge Course Mathematics – II*		3*	0	0	50*	50*	100*
			Total	20	15 18*	2	6	400 450*	400 450*	800 900*

V Semester B.E. (E & CE)

SI. N	Category	Subject Code	Subject Title	Credits	HC V	DURS VEEK	/	EX	AMINAT MARK	FION S
о					L	Т	Ρ	CIE	SEE	Total
1	РСС	21UEC501C	Digital Signal Processing	03	3	0	0	50	50	100
2	PCC	21UEC502C	Control Engineering	03	3	0	0	50	50	100
3	PCC	21UEC503C	CMOS Digital VLSI Design	03	3	0	0	50	50	100
	PCC	21UEC504L	CMOS Digital VLSI Laboratory	01	0	0	3	50	50	100
5	PEC	21UEC505E 21UEC506E 21UEC507E	 Java Programming Digital System Design using Verilog Mobile Communication 	03	3	0	0	50	50	100
6	OEC1	21UEC535n 21UEC532N	 Communication Systems Digital Electronics and Microcontrollers 	03	3	0	0	50	50	100
7	INT	21UEC510I	Internship – II	03	-	-	-	70	30	100
8	HSSM	21UBT523C	Environmental Studies	01	1	0	0	50	50	100
9	AEC	21UHS521C	Quantitative Aptitude and Professional Skills	02	2	0	0	50	50	100
			Total	22	17	2	5	450	450	900

SI. No	Category	Subject Code	Subject Title	Credits	HC V	DURS VEEK	/	EX	AMINAT MARKS	FION S
					L	Т	Ρ	CIE	SEE	Total
1.	BSC	21UEC601C	Information Theory and Coding	03	3	0	0	50	50	100
2.	РСС	21UEC602C	Electromagnetic Theory	03	3	0	0	50	50	100
3.	PCC	21UEC603C	Computer Networks	03	3	0	0	50	50	100
	PCC	21UEC604L	Computer Networks Laboratory	01	0	0	3	50	50	100
5	PCC	21UEC605L	Advanced Communication Laboratory	01	0	0	3	50	50	100
6	PEC	21UEC606E 21UEC607E 21UEC608E 21UEC609E 21UEC610E	 Biomedical Signal Processing Computer Organization Image Processing Embedded Systems Wireless Networks 	03	3	0	0	50	50	100
7	OEC2	21UEC611N 21UEC612N	 Sensor Technology Image Processing Sensors and Actuators 	03	3	0	0	50	50	100
	OEC3	21UEC613N 21UEC614N	 Modeling and Simulation of engineering Systems Nanotechnology 	03	3	0	0	50	50	100
9	MP	21UEC613P	Mini Project	02	-	-	-	50	50	100
			Total	22	15	0	6	400	400	800

VI Semester B.E. (E & CE)

SI.	Category	Subject Code	Subject Title	Credits	HOU	rs/ w	/EEK	EXAM	NATION	I MARKS
N O					L	Т	Р	CIE	SEE	Total
1.	PCC	21UEC701C	Microwaves and Antennas	03	3	0	0	50	50	100
2.	PEC	21UEC702E	1) Multimedia Communication	03	3	0	0	50	50	100
		21UEC703E	2) Machine Learning							
		21UEC704E	3) Micro Electro Mechanical Systems							
		21UEC718E	4) VLSI Testing							
		21UEC706E	5) Advanced Tools for VLSI Design							
		21UEC707E	6) Speech Signal Processing							
		21UEC716E	7) IoT(Hardware Orientation)							
3	PEC	21UEC717E	1) Multi-rate Signal Processing	03	3	0	0	50	50	100
		21UEC710E	2) Wavelets							
		21UEC712E	3) Operating Systems							
		21UEC713E	4) ANN(Artificial Neural Networks)							
		21UEC714E	5) Cryptography and Network Security							
		21UEC715E	6) IC Technology							
		21UEC705E	7) Satellite Communications							
5.	Project	21UEC708P	Project Work	08				50	50	100
7	HSSM	21UEC709C	Human Resource and Management	03	3	0	0	50	50	100
			Total	20	12	0	0	250	250	500

VII/VIII Semester B.E. (E & CE), Group – 1*

7th and 8th semesters are swapped between group 1 and group 2 students
* Offered between 3rd to 6th semester

SI.	Category	Subject Code	Subject Title	Credits	HOU	JRS/ V	VEEK	EXAM	NATION	I MARKS
N O					L	Т	Р	CIE	SEE	Total
1.	AEC	21UECXXXX	MOOCs*	03	-	-	-	-	-	-
2.	AEC	21UEC802C	Research Methodology	02	-	-	-	50	50	100
3.	Seminar	21UEC803S	Technical Seminar	01	-	-	-	50	50	100
4.	INT	21UEC804T	Internship - III	10	-	-	-	50	50	100
		Total		16	-	-	-	150	150	300

Syllabus for B.E. I & II – Semester (For students admitted to I year in 2021-22)

21UEC104C		03-Credits, L:T:P (3:0:0)
Hrs/Week: 03	Basic Electronics	CIE Marks:50
Total Hours: 40		SEE Marks:50

UNIT - I	10 Hrs	
Semiconductor Diodes: Introduction, PN junction diode, characteristics and parar	meters, diode	
approximations, DC load line analysis		
Diode Applications: Introduction, half wave rectification, full wave rectificatio	on, full wave	
rectifier power supply: Capacitor filter circuit, voltage multiplier, diode logic gates	-	
Zener Diodes: Junction breakdown, circuit symbol and package, characteristics and	d parameters,	
equivalent circuit, Zener diode voltage regulator.		
Self-study component: ESAKI diode and its working	10 11	
UNII – II Dinalar Junation Transistant Introduction DIT valuance and currents com	IU Hrs	
Bipolar Junction Transistors: Introduction, BJT voltages and currents, com	imon base	
characteristics, common emitter characteristics, common collector characteristics,		
BJT Biasing: Introduction, DC load line and bias point, BJT amplification, volta	age divider	
bias.		
Amplifier and Oscillator: Single stage CE-amplifier, RC-phase shift oscillator, LC	Coscillator	
Self -study component: BJT as a switch		
UNIT - III	10 Hrs	
Operational Amplifiers: Introduction, the operational amplifier, block diagram re	epresentation	
of typical op-amp, schematic symbol, op-amp parameters - gain, input resist	tance, output	
resistance, CMRR, slew rate, bandwidth, input offset voltage, input bias current and	d input offset	
current, the ideal op-amp, equivalent circuit of op-amp, open loop op-amp co	onfigurations,	
differential amplifier, inverting & non inverting amplifier		
Op-Amp Applications: Inverting configuration, non-inverting configuration, diffe	erential	
configuration voltage follower integrator differentiator		
configuration, voltage follower, integrator, differentiator		
Self-study component: Op-Amp as zero crossing detector		
Self-study component: Op-Amp as zero crossing detector		
Self-study component: Op-Amp as zero crossing detector UNIT - IV	10 Hrs	
Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion	10 Hrs n, octal &	
<td>10 Hrs n, octal & f Boolean</td>	10 Hrs n, octal & f Boolean	
<td college="" follower,="" integrato<="" td=""><td>10 Hrs n, octal & f Boolean onical and</td></td>	<td>10 Hrs n, octal & f Boolean onical and</td>	10 Hrs n, octal & f Boolean onical and
Configuration, voltage follower, integrator, differentiator Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, cand standard forms, other logic operations, digital logic gates	10 Hrs n, octal & f Boolean onical and	
	10 Hrs n, octal & f Boolean onical and er	
Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, cand standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adder Communications: Introduction to communication, communication system, modula	10 Hrs n, octal & f Boolean onical and er ttion	
Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, cano standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adder Communications: Introduction to communication, communication system, modula Self-study component: Half subtractor and full subtractor	10 Hrs n, octal & f Boolean onical and er tion	
Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, cand standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adder Communications: Introduction to communication, communication system, modula Self-study component: Half subtractor and full subtractor Reference books:	10 Hrs n, octal & f Boolean onical and er ation	
Configuration, voltage follower, integrator, differentiator Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, can standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adder Communications: Introduction to communication, communication system, modula Self-study component: Half subtractor and full subtractor Reference books: 1) Mike Tooley, 'Electronic Circuits, Fundamentals & Applications', 4 th Editi	10 Hrs n, octal & f Boolean onical and er ttion	
Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, can standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adder Communications: Introduction to communication, communication system, modula Self-study component: Half subtractor and full subtractor Reference books: 1) Mike Tooley, 'Electronic Circuits, Fundamentals & Applications', 4 th Editi 2015.	10 Hrs n, octal & f Boolean onical and er ation	
 Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, cand standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adde Communications: Introduction to communication, communication system, modula Self-study component: Half subtractor and full subtractor Reference books: Mike Tooley, 'Electronic Circuits, Fundamentals & Applications', 4th Editi 2015. Digital Logic and Computer Design, M. Morris Mano, PHI Learning, 2008 81-203- 0417-84. 	10 Hrs n, octal & f Boolean onical and er ttion ion, Elsevier, 8 ISBN-978-	
 Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, cand standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adder Communications: Introduction to communication, communication system, modula Self-study component: Half subtractor and full subtractor Reference books: Mike Tooley, 'Electronic Circuits, Fundamentals & Applications', 4th Editi 2015. Digital Logic and Computer Design, M. Morris Mano, PHI Learning, 2008 81-203- 0417-84. D P Kothari, I J Nagrath, 'Basic Electronics', 2nd edition, McGraw Hill (India), Private Limited, 2018 	10 Hrs n, octal & f Boolean onical and er ation ion, Elsevier, 8 ISBN-978- ll Education	
 Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, cand standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adde Communications: Introduction to communication, communication system, modula Self-study component: Half subtractor and full subtractor Reference books: Mike Tooley, 'Electronic Circuits, Fundamentals & Applications', 4th Editi 2015. Digital Logic and Computer Design, M. Morris Mano, PHI Learning, 2008 81-203-0417-84. D P Kothari, I J Nagrath, 'Basic Electronics', 2nd edition, McGraw Hil (India),Private Limited, 2018 	10 Hrs n, octal & f Boolean onical and er ttion ion, Elsevier, 8 ISBN-978- ll Education	
 Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, cand standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adde Communications: Introduction to communication, communication system, modula Self-study component: Half subtractor and full subtractor Reference books: Mike Tooley, 'Electronic Circuits, Fundamentals & Applications', 4th Editi 2015. Digital Logic and Computer Design, M. Morris Mano, PHI Learning, 2008 81-203-0417-84. D P Kothari, I J Nagrath, 'Basic Electronics', 2nd edition, McGraw Hil (India),Private Limited, 2018 Course Outcomes: A student who successfully completes this course should be able to 	10 Hrs n, octal & f Boolean onical and er ation ion, Elsevier, 8 ISBN-978- ll Education	
 Configuration, vortage follower, integrator, uniferentiator Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, cand standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adder, communications: Introduction to communication, communication system, modula Self-study component: Half subtractor and full subtractor Reference books: Mike Tooley, 'Electronic Circuits, Fundamentals & Applications', 4th Editi 2015. Digital Logic and Computer Design, M. Morris Mano, PHI Learning, 2008 81-203-0417-84. D P Kothari, I J Nagrath, 'Basic Electronics', 2nd edition, McGraw Hil (India),Private Limited, 2018 Course Outcomes: A student who successfully completes this course should be able to COI: Design the basic circuits to get V-I characteristics of semiconductor devices. 	10 Hrs n, octal & f Boolean onical and er ttion ion, Elsevier, 8 ISBN-978- ll Education	
 Cominguration, vortage ronower, integrator, uniferentiator Self-study component: Op-Amp as zero crossing detector UNIT - IV Boolean Algebra and Logic Circuits: Binary numbers, number base conversion hexadecimal numbers, complements, basic definitions, axiomatic definition of algebra, basic theorems and properties of Boolean algebra, Boolean functions, cand standard forms, other logic operations, digital logic gates Combinational logic: Introduction, design procedure, adders- half adder, full adde Communications: Introduction to communication, communication system, modula Self-study component: Half subtractor and full subtractor Reference books: Mike Tooley, 'Electronic Circuits, Fundamentals & Applications', 4th Editi 2015. Digital Logic and Computer Design, M. Morris Mano, PHI Learning, 2008 81-203- 0417-84. D P Kothari, I J Nagrath, 'Basic Electronics', 2nd edition, McGraw Hil (India),Private Limited, 2018 Course Outcomes: A student who successfully completes this course should be able to CO1: Design the basic circuits to get V-I characteristics of semiconductor devices. CO2: Design a BJT amplifier to meet the given specifications. 	10 Hrs n, octal & f Boolean onical and er ttion ion, Elsevier, 8 ISBN-978- ll Education	

CO4: Design simple logic circuits using basic gates. **CO5:** Design type of modulation necessary for a given communication applications.

Course	Pro	Programme Outcomes														
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12				
CO1	3	3	2	-	2	2	-	-	-	-	-	-				
CO2	3	2	3	-	2	1	-	-	-	-	-	-				
CO3	3	2	3	-	3	-	-	-	1	-	-	-				
CO4	2	1	1	-	2	1	-	-	1	-	-	1				
CO5	2	1	1	-	2	1	-	-	1	-	-	1				

Syllabus for B.E. III & IV – Semester (For students admitted to I year in 2021-22)

SUBJECT CODE: 21UMA301C	Numerical Techniques and Integral	Credits: 03
L:T:P - 3-0-0	Transforms	CIE Marks: 50
Total Hours/Week: 3		SEE Marks: 50

	UNIT-I	xx Hrs.
Numer metho betwee	rical Analysis-I: Introduction to root finding problems, Bisection Method, Newton-Ra d. Finite differences, forward and backward difference operators (no derivations or en operators) Newton-Gregory forward and backward interpolation formulae. (With ge's and Newton's divided difference interpolation formulae (without proof)	aphson n relations hout proof),
Lagran		xx Hrs.
Nume proble (no de order	erical Analysis-II: Numerical differentiation using Newton's forward and backward ems. Trapezoidal rule, Simpson's one third rule, Simpson's three eighth rule and We erivation of any formulae)-problems. Euler's and Modified Euler's method, Rung method.	l formulae- eddle's rule ge-Kutta 4 th
	UNIT–III	xx Hrs.
Fourie expar functi	er series: Periodic functions, Conditions for Fourier series expansions, Fourier serions of continuous and functions having finite number of discontinuities, even and fons. Half-range series, practical harmonic analysis.	ies d odd
	UNIT–IV	xx Hrs.
simple transf proble Refere	e properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine Forms. Z-transforms-definition, standard forms, linearity property, damping rule, sh ems nce Books *	and cosine nifting rule-
Textbo	poks:	
1. 2. 3. Refere	Numerical Methods for Engineers by Steven C Chapra & Raymond P Canale. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New Delhi Advanced Engineering Mathematics By H. K. Das, S. Chand & company Ltd. Ram Delhi. nce Book: Advanced Engineering Mathematics by E Kreyszig (John Wiley & Sons)	Nagar, New
1.	Advanced Engineering Mathematics by E Kreyszig (John Whey & Sons)	
Course	e Outcomes**	
After c 1. 2. 3. 4. 5.	completion of the course student will be able to Solve engineering problems using non-linear equations and interpolation technic Solve problems using numerical differentiation and numerical integration. Perform numerical solutions of ordinary differential equations. Understand Fourier analysis that provides a set of mathematical tools which engineer to break down a wave into its various frequency components. It is the predict the effect of a particular waveform. Understand the basic concepts of Fourier transforms and z –transforms, to solv and difference equations.	ques. enable the en possible re ode, pde

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
	1															
CO2																
	1	2														
CO3	1															
CO4	1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO5	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

21UEC302C		Credit	s:03	
L:T:P - 3 : 0: 0	Electronic devices and Circuits Design	CIE Mark	s: 50	
Total Hours/Week: 03		SEE Marks: 50		
			10Hrs	

UNIT-I	10Hrs.
Field Effect Transistors: Introduction, construction, operation and characteristics of JFE	Ts, transfer
characteristics, depletion type MOSFET, enhancement type MOSFET, practical application	s.
Thyristors: Introduction, construction, operation and characteristics of SCR, TRIAC, UJT.	
Diode applications: clippers and clampers.	
Self-study component: Comparison between Si and Ge diode, study of Data sheets of diff	erent types
of Si and Ge diodes, Zener diodes.	
UNIT-II	10 Hrs.
Optoelectronic Devices: Light units, Light emitting diode (LED), liquid crystal displays (I	LCD), photo
conductive cell, photo diode and solar cells, photo transistors, opto-couplers.	
Miscellaneous Devices: Schottky diode, varactor diode, power diode, tunnel diode.	
Self-study components: Voltage Variable Capacitors (VVC), Thermistors: operation, cha	aracteristics
and applications.	
UNIT–III	10 Hrs.
biasing, Common gate configuration, Design, Trouble shooting, p-channel FETs, Universal curve.	JFET bias
Self-study components: Study of multistage amplifier: classification, distortions in am stage RC coupled amplifier and its frequency response.	plifier, two
UNIT-IV	10 Hrs.
FET amplifiers: Introduction, JFET small signal model, voltage divider bias configuration. Power Supplies (Voltage Regulators) : Introduction, general filter considerations, capa RC filter, discrete transistor voltage regulation, IC voltage regulators.	acitor filter,
Reference Books *	
 Nashelesky & Boylestead, 2009, "Electronic Devices & Circuit Theory" 10th Edition D.A.Bell, 2007, "Electronic Devices & Circuit", 4th Edition, PHI M. D. Singh, K. B. Khanchandani, 2007, "Power Electronics", 2nd Edition, McGraw Publication 	ı, Pearson Hill
Course Outcomes**	
 After completion of the course student will be able to 1. Analyze different types of electronic devices and design clipper and clamper circuits. 2. Differentiate the characteristics and importance of different optoelectronic device 	·S.
3. Choose a specific FET and other components to design an amplifier.	

4. Design a regulated power supply to meet the given specifications.

Course Outcomes		Programme Outcomes (POs)									Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	-	-	-	-	-	-	-	-	-	3	2	
CO2	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-
CO3	3	3	3	-	-	-	1	-	-	I	-	-	3	-	-
CO4	3	3	3	-	-	_	-	-	-	-	-	-	3	1	-

21UEC303C		Credits: 03
L:T:P - 3 : 0: 0	Digital Electronics and Logic Design	CIE Marks: 50
Total Hours/Week: 40		SEE Marks: 50
		-

UNIT-I	10 Hrs.
Principles of Combinational Logic and Design: Review of Boolean algebra, simplif	ication and
implementation of Boolean expression using basic gates and universal gates. De	efinition of
combinational logic, canonical forms, generation of switching equations from truth tab	les, K-maps
(up to 5 variables), Quine-McCluskey minimization technique, map entered variables.	
	10Hrs.
Analysis and Design of Combinational Circuit using MSI Components: General appro	bach,
comparators deceders encoders multiplexers	
	10Hrs
Flip-Flops: The basic bistable element latches timing considerations master-slave S	R flip-flops
master slave JK flip-flop, edge triggered flip-flop, positive edge triggered D flip-flop, ne	gative edge
triggered D flip-flop, characteristic equations.	8
Applications of Flip-Flops: Registers (SISO, SIPO, PISO and PIPO) and bidirectional shift r	egister.
UNIT-IV	10Hrs.
 based on shift registers, design of synchronous counters, design of asynchronous counter clocked JK, D, T and SR flip-flops. Sequential Circuit Design and Analysis: Introduction to Mealy and Moore models, stanotation, synchronous sequential circuit analysis, construction of state diagrams. Reference Books * Donald D Givone, 2002, "Digital Principle and Design". Tata McGraw Hill John M Yarbrough, 2001, "Digital Logic Applications and Design", Thomson Learnin Thomas L. Floyd, "Digital Fundamentals", 9th edition, PHI Charles H Koth, 2004, "Fundamentals of Logic Design", Thomson learning Meno and Kim, 2001, "Logic and Computer Design Fundamentals", 2nd edition, PHI 	er using te machine ng earson
Course Outcomes**	
 After completion of the course student will be able to 1. Simplify the given Boolean expressions using Boolean algebra, K-map, Quine Mc and map entered variables methods. 2. Design and analyse combinational circuits using i) basic gates ii) universal gates i and iv) decoder and gates. 3. Analyse different types of latches, flip flops and shift registers. 4. Design, model and analyse synchronous and asynchronous sequential circuits. 	Cluskey ii) MUXs

Course Outcomes	Programme Outcomes (POs)										Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	1	1	1	-	1	-	-	-	-	-	3	1	
CO2	3	3	3	2	1	-	1	-	-	-	-	-	3	1	
CO3	3	3	3	2	1	-	1	-	-	-	-	-	3	1	
CO4	3	2	3	2	2	-	1	-	-	-	-	-	3	1	

SUBJECT CODE:	Credits: 03
21UEC304C	
L:T:P – 3-0-0	CIE Marks: 50
Total Hours/Week: 03	SEE Marks: 50

UNIT-I	10 Hrs.				
Basic concepts: Concept of voltage, current and power, ideal and practical representation of energy					
sources, source transformation, network reduction using star-delta transformation, metwork	esh current				
and node voltage analysis with dependent and independent sources for AC and DC networks, concept					
of super mesh and super node.					
UNIT–II	10 Hrs.				

Network theorems: Superposition, Millman's, Thevenin's, and Maximum power transfer theorems. **Network topology:** Graph of a network, concept of tree and co-tree, incidence matrix, tie-set matrix, cut-set matrix, analysis of networks, network equilibrium equations.

UNIT-III10 Hrs.Resonance circuits: Series and parallel resonance circuits, frequency of resonance, frequency
responses, Q-factor, bandwidth. Two port network parameters: Z, Y, h, transmission parameters
and relationship between parameters.

UNIT–IV

10 Hrs.

Laplace transformation: Basic theorems, Laplace transform of periodic functions, application of Laplace transform to RL and RC circuits. **Attenuators:** Symmetrical T, PI, bridge T, Lattice attenuators, Asymmetrical T, L, and PI attenuators. **Equalizers:** Two terminal series and shunt equalizers.

Reference Books *

Textbooks:

Roy Choudhary, "Networks and systems", 2nd Edition, New Age International Publications, 2006.
 G. K. Mithal, "Network Analysis", Khanna Publishers, 1997.

Reference Books:

- 1. Hayt, Kemmerly and Durbin, "Engineering Circuit Analysis", 6th Edition, TMH, 2006.
- 2. M.E. Van Valkenberg "Network analysis", Prentice Hall of India, 3rd Edition, 2000.

Course Outcomes**

After completion of the course student will be able to

- 1. Simplify networks using source transformation, star-delta conversion and determine current, voltage, power using nodal and mesh analysis to AC and DC networks.
- 2. Apply network theorems and topology for complex networks to find responses.
- 3. Analyze series and parallel resonant circuits and find different network parameters.
- 4. Apply concept of Laplace transformation to networks and waveforms, design attenuators and simple equalizers.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pro	gram	me	Outo	com	es (F	POs)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
	3	2	1	2	1	1	-	-	1	-	-	1	3	-	-	
CO2	3	3	1	2	1	1	-	-	1	-	-	1	3	-	-	
CO3																
	3	3	1	2	1	1	-	-	1	-	-	1	3	-	-	
CO4																
	3	2	1	2	1	1	-	-	1	-	-	1	3	-	-	

SUBJECT CODE:		Credits: 03
21UEC305C	Data Structures using "C"	
L:T:P – 3-0-0	Data Structures using "C"	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

Introduction: Data structures, classifications (primitive & non primitive), data structure operations, pointers and dynamic memory allocation, pointers to arrays, structures, self-referential structures, pointers to structures. Functions: Functions (Passing structure variable as an argument, passing whole structure as argument, passing structure variable as a pointer argument, etc). UNIT-II xx Hrs. Dynamically allocated arrays (Using calloc() or malloc()), array Operations: traversing, inserting, deleting, searching, and sorting. Stacks: definition, stack operations (push, pop and display. Test: underflow and overflow conditions), array representation of stacks, stacks using dynamic arrays, Stack Applications: infix to postfix conversion, evaluation of postfix expression, program to evaluate postfix expression, program to convert Infix to Postfix expression. UNIT-III xx Hrs. Recursion - Factorial, GCD, Fibonacci sequence, tower of Hanoi. Queues: Definition, array representation, queue operations (Insert, delete and display), circular queues operations (Insert, delete and display), De-queues(Insert, delete and display), Priority Queues(Insert, delete and display). programming examples. UNIT-IV xx Hrs. Linked Lists: Definition, representation of linked lists in memory, Linked list operations: Traversing, searching, insertion, and deletion. Doubly linked lists(Traversing, searching, insertion, and deletion),

searching, insertion, and deletion. Doubly linked lists(Traversing, searching, insertion, and deletion), Circular linked lists(Traversing, searching, insertion, and deletion). Implementation of stack and queue using singly linked list. Programming Examples. **Reference Books ***

Text Books

- Ellis Horowitz and Sartaj Sahni," Fundamentals of Data Structures in C", Universities Press, 2nd Edition, 2014
- 2. Gilberg & Forouzan," A Pseudo-code approach with C", Cengage Learning, 2nd Edition, 2014
- Seymour Lipschutz, Schaum's Outlines, "Data Structures", McGraw Hill, Revised 1st Edition, 2014
- 4. Behrouz A. Forouzan and Richard F. Gilberg, "Computer Science A Structured Programming Approach Using C", Thomson, 2ndEdition

Reference Books

1. A M Tenenbaum, "Data Structures using C", PHI, 1989Robert Kruse, "Data Structures and Program Design in C", PHI, 2nd edition, 1996

Course Outcomes**

After completion of the course student will be able to

- Demonstrate the concepts of a) various types of data structures, operations and algorithms,
 b) Sorting and searching operations.
- 2. Analyze the performance of stack, queue, lists, trees, and searching and sorting techniques.
- 3. Write the C programs for all the applications of data structures.
- 4. To solve real world problems by applying data structure concepts.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			Р	rog	ram	me	Out	con	nes (F	POs)			Prog Outc	ram Spo omes (F	ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
	3	3	-	-	-	2	1	-	-	-	-	1	2	-	2
CO2	3	2	-	-	-	1	1	-	-	-	-	2	2	-	2
CO3	3	3	-	-	-	1	1	-	-	-	-	3	2	-	2
CO4	3	2	-	-	-	1	2	-	-	-	-	3	2	-	2

SUBJECT CODE:		Credits: 01
21UEC306L	Floatsonic Devices and Circuits Laboratory	
L:T:P – 0-0-3	Electronic Devices and Circuits Laboratory	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

SL No	
SI. INO	
1.	V-I characteristics and analysis of diode.
2.	Analysis of diode as a half-wave and full-wave rectifier.
3.	V-I characteristics and their analysis of Zener diode.
4.	Zener diode as a voltage regulator and its regulation analysis.
5.	Input and output characteristics and their analysis of Bipolar Junction Transistor (BJT) in common base, common collector and common emitter configuration.
6.	Design, implementation and frequency response of transistor (BJT) as an amplifier
7.	Design and implementation of transistor (BJT) as an oscillator.
8.	Input and output characteristics and their analysis of field effect transistor (FET).
9.	Design, implementation and frequency response of FET as an amplifier.
10.	V-I characteristics and analysis of unijunction transistor (UJT).
11.	Implementation of UJT as a relaxation oscillator.
12.	V-I characteristics and analysis of silicon controlled rectifier (SCR).
13.	Study of SCR as half-wave and full-wave controlled rectifier.
14.	Simulation and analysis of Amplifiers and Oscillators.
15.	Simulation and analysis of DC and AC excited RL and RC circuits.
Course Outc	omes**
After comple	etion of the course student will be able to
1.	Characterize semiconductor devices based on their characteristics.
2.	Realize rectifiers, controlled rectifiers and regulators.
3.	Design amplifiers and oscillators for given specifications.
4.	Simulate and analyze basic electronic circuits.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			I	Prog	ram	ime	Out	con	nes (POs)			Prog Outc	ram Spo omes (F	ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	2	2	1	2	2	2	2	2	3	0	0
CO2	3	2	2	2	3	2	2	3	2	2	2	1	3	0	0
CO3	3	2	2	2	2	3	2	3	2	3	2	3	3	0	0
CO4	3	2	2	1	3	1	2	3	1	2	1	3	3	0	0

21UEC307L L:T:P – 0-0-3

Digital Electronics Laboratory

Credits: 1

CIE Marks: 50

Total Hours/Week: 03

	SEE Marks: 50
LIST OF THE EXPERIMENTS	

SI. No.		
1	Simplification, realization of Boolean expression(s) using basic logic gates.	
2	Implementation of Boolean expression(s) using universal gates.	
3	Design of full adder and full subtractor implementation using basic logic gates.	
4	Realization of	
	a. Parallel adder / subtractor using 7483chip	I
	b. Decoder chip to drive LED display	1
5	Design and implementation of code converters (any two).	
6	Implementation of three variable Boolean expression(s) using	I
	a. 8:1MUX	I
	b. 4:1MUX	L
7	Implementation of three variable Boolean expression(s) using 3:8 decoder and gates.	1
8	Design of two-bit comparator using basic logic gates and study of 7485 magnitude	I
	comparator.	
9	Truth table verification of flip-flops:	I
	a. Master Slave JK flip-flop implementation using only NANDgates	I
	b. JK flip flop using7476.	
10	Design of	I
	a. 4-bit asynchronous up counter using JK flip-flop(7476)	I
	b. 4-bit asynchronous down counter using JK flip-flop(7476)	I
	c. Mod-n asynchronous counter (7476) (n <=4)	
11	Design of	I
	a. UP counter using 74193	I
	b. DOWN counter using 74193	
12	Design of shift registers using 7 495 viz. SIPO, SISO, PISO, PIPO shift right, shift left.	
13	Simulate any 6 experiments covering both combinational and sequential circuits usir	ıg
	circuit simulator- PROTEUS VSM.	

Course Outcomes**

After completion of the course student will be able to

- 1. Should be able to design combinational circuits and implement it using a) basic logic Gates b) universal gates, c) multiplexers and d) decoder and gates
- 2. Should be able to design and realize latches and flip flops
- 3. Should be able to design and implement asynchronous counters
- 4. Should be able to design and implement synchronous counters and shift registers
- 5. Should be able to simulate combinational and sequential circuit using PROTEUS software

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			ſ	Prog	ram	ime	Out	con	nes	POs)			Prog Outc	ram Spo omes (F	ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	0	0	0	0	0	1	1	0	0	2	3	0
CO2	2	2	3	0	0	0	0	0	1	1	0	0	2	3	0
CO3	1	2	3	0	0	0	0	0	1	1	0	0	2	3	0
CO4	2	2	3	0	0	0	0	0	1	1	0	0	2	3	0
CO5															

SUBJECT CODE: 21UEC308C Higher Programming Paradigm CIE Marks: 50 I:T:P - 2-0-0 CIE Marks: 50 Total Hours/Week: 02 SEE Marks: 50 UNIT-I 10 Hrs. Datatypes in python: comments in python, Docstrings, How python sees variables, Datatypes in oython, Sequences in python, Literals in python, Determining the data type of a variable, Identifiers and reserved words, Naming conventions in python Deparators in Python: Operator, operator precedence and associativity, Mathematical functions nput and Output: Output statements, Input statements, Command Line arguments Concol Statements Strings and Characters UNIT-II 10 Hrs. *unctions: Defining a function, calling a function, Returning Results from a function, Returning nultiple values from a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple, Dictionaries. UNIT-III 10 Hrs. Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions Tiles in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. UNIT-IV 10 Hrs. Diget Oriented Programming: Classes with Multiple Objects, Class Attributes versus Data Attributes, incapsulation, Inheritance, The Polymorphism.				A 4
Lit: P - 2-00 Higher Programming Paradigm CIE Marks: 50 Total Hours/Week: 02 UNIT-I 10 Hrs. Datatypes in python: comments in python, Docstrings, How python sees variables, Datatypes in python, Sequences in python, Literals in python, Determining the data type of a variable, Identifiers and reserved words, Naming conventions in python 10 Hrs. Departors in Python: Operator, operator precedence and associativity, Mathematical functions nput and Output: Output statements, Input statements, Command Line arguments 10 Hrs. Concol Statements Strings and Characters UNIT-II 10 Hrs. "sunctions: Defining a function, calling a function, Returning Results from a function, Returning nultiple values from a function, recursive functions, the special variable_ nam. Lists and tuples: ists, tuple, Dictionaries. 10 Hrs. "xceptions: exceptions, exception handling, types of exceptions, user defined exceptions 10 Hrs. "xceptions: exceptions, exception handling, types of exceptions, user defined exceptions 10 Hrs. "ython: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. 10 Hrs. Difference Oriented Programming: Classes with Multiple Objects, Class Attributes versus Data Attributes, incapsulation, Inheritance, The Polymorphism. 10 Hrs.			Credits	s: 01
Total Hours/Week: 02 SEE Marks: 50 SEE Marks: 50 UNIT-I 10 Hrs. Datatypes in python: comments in python, Docstrings, How python sees variables, Datatypes in python, Sequences in python, Literals in python, Determining the data type of a variable, Identifiers and reserved words, Naming conventions in python Operators in Python: Operator, operator precedence and associativity, Mathematical functions nput and Output: Output statements, Input statements, Command Line arguments Control Statements Strings and Characters 10 Hrs. *unctions: Defining a function, calling a function, Returning Results from a function, Returning nultiple values from a function, Formal and actual arguments, local and global variables, passing a group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple, Dictionaries. UNIT-II 10 Hrs. Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions ists ist ist ist python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. 10 Hrs. Distring Operator Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, incapsulation, Inheritance, The Polymorphism.	1.T.P = 2.0.0	Higher Programming Paradigm	CIF Mark	's' 50
UNIT-I 10 Hrs. 10 Hrs.	Total Hours/Week: 02		SEE Mark	(s: 50
UNIT-I10 Hrs.Datatypes in python: comments in python, Docstrings, How python sees variables, Datatypes in python, Sequences in python, Literals in python, Determining the data type of a variable, Identifiers and reserved words, Naming conventions in python Dperators in Python: Operator, operator precedence and associativity, Mathematical functions 				
Datatypes in python: comments in python, Docstrings, How python sees variables, Datatypes in python, Sequences in python, Literals in python, Determining the data type of a variable, Identifiers and reserved words, Naming conventions in python Operators in Python: Operator, operator precedence and associativity, Mathematical functions nput and Output: Output statements, Input statements, Command Line arguments Control Statements Strings and Characters UNIT-II 10 Hrs. Functions: Defining a function, calling a function, Returning Results from a function, Returning nultiple values from a function, Formal and actual arguments, Iocal and global variables, passing a group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple, Dictionaries. UNIT-III UNIT-II 10 Hrs. Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions Files in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. UNIT-IV 10 Hrs. Dython, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism.		UNIT-I		10 Hrs.
bython, Sequences in python, Literals in python, Determining the data type of a variable, Identifiers and reserved words, Naming conventions in python Operators in Python: Operator, operator precedence and associativity, Mathematical functions nput and Output: Output statements, Input statements, Command Line arguments Control Statements Strings and Characters UNIT–II 10 Hrs. Functions: Defining a function, calling a function, Returning Results from a function, Returning multiple values from a function, Formal and actual arguments, local and global variables, passing a group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple, Dictionaries. UNIT–III 10 Hrs. Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions "iles in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. UNIT–IV 10 Hrs. Dbject Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism. Reference Books *	Datatypes in python: com	nents in python, Docstrings, How python see	s variables, D	atatypes in
and reserved words, Naming conventions in python Dperators in Python: Operator, operator precedence and associativity, Mathematical functions nput and Output: Output statements, Input statements, Command Line arguments Control Statements Strings and Characters UNIT–II 10 Hrs. ⁵ unctions: Defining a function, calling a function, Returning Results from a function, Returning nultiple values from a function, Formal and actual arguments, local and global variables, passing a group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple, Dictionaries. 10 Hrs. Succeptions: exceptions, exception handling, types of exceptions, user defined exceptions 10 Hrs. Succeptions: exceptions, exception handling, types of exceptions, user defined exceptions 10 Hrs. Discretions: exceptions, exception handling, types of exceptions, user defined exceptions 10 Hrs. Succeptions: exceptions, exception handling, types of exceptions, user defined exceptions 10 Hrs. Discretions: exceptions, exception handling, types of exceptions, user defined exceptions 10 Hrs. Succeptions: exceptions: exception handling, types of exceptions, user defined exceptions 10 Hrs. Discretions: exceptions: exceptions working with binary files, pickle in python. 10 Hrs. Discret Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, encapsulation, Inheritance, The Polymorphism.	python, Sequences in pythc	n, Literals in python, Determining the data type	e of a variable	, Identifiers
Operators in Python: Operator, operator precedence and associativity, Mathematical functions nput and Output: Output statements, Input statements, Command Line arguments Control Statements Strings and Characters UNIT–II 10 Hrs. Functions: Defining a function, calling a function, Returning Results from a function, Returning multiple values from a function, Formal and actual arguments, local and global variables, passing a group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple, Dictionaries. UNIT–III 10 Hrs. Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions "iles in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. UNIT–IV 10 Hrs. Dipect Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, incapsulation, Inheritance, The Polymorphism. Reference Books * *	and reserved words, Namin	conventions in python		
Input and Output: Output statements, Input statements, Command Line arguments Control Statements Strings and Characters UNIT–II 10 Hrs. Functions: Defining a function, calling a function, Returning Results from a function, Returning multiple values from a function, Formal and actual arguments, local and global variables, passing a group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple , Dictionaries. 10 Hrs. Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions Io Hrs. Files in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. 10 Hrs. Diject Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, incapsulation, Inheritance, The Polymorphism. Reference Books * **	Operators in Python: Opera	or, operator precedence and associativity, Math	nematical func	tions
Control Statements Strings and CharactersUNIT–II10 Hrs.Functions: Defining a function, calling a function, Returning Results from a function, Returning multiple values from a function, Formal and actual arguments, local and global variables, passing a group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple , Dictionaries.UNIT–III10 Hrs.Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions stiles in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python.10 Hrs.Dbject Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism.Reference Books *	Input and Output: Output s	atements, Input statements, Command Line arg	uments	
UNIT-II10 Hrs.Functions: Defining a function, calling a function, Returning Results from a function, Returning multiple values from a function, Formal and actual arguments, local and global variables, passing a group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple , Dictionaries.UNIT-III10 Hrs.Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions stiles in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python.UNIT-IV10 Hrs.Dbject Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism.Reference Books *	Control Statements Strings	and Characters		
Functions: Defining a function, calling a function, Returning Results from a function, Returning multiple values from a function, Formal and actual arguments, local and global variables, passing a group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple, Dictionaries. UNIT-III 10 Hrs. Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions Files in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. UNIT-IV 10 Hrs. Diject Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism. Reference Books *		UNIT–II		10 Hrs.
multiple values from a function, Formal and actual arguments, local and global variables, passing a group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple , Dictionaries. UNIT–III 10 Hrs. Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions Tiles in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. UNIT–IV 10 Hrs. Distributed Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism. Reference Books *	Functions: Defining a funct	ion, calling a function, Returning Results from	a function, F	Returning
group of elements to a function, recursive functions, the special variablenam. Lists and tuples: ists, tuple , Dictionaries. UNIT-III 10 Hrs. Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions Files in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. UNIT-IV 10 Hrs. Dbject Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism. Reference Books *	multiple values from a funct	ion, Formal and actual arguments, local and glo	bal variables,	passing a
ists, tuple , Dictionaries. UNIT–III 10 Hrs. Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions Files in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. UNIT–IV 10 Hrs. Dbject Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism. Reference Books *	group of elements to a fund	tion, recursive functions, the special variable_	_nam. Lists an	nd tuples:
UNIT-III10 Hrs.Exceptions: exceptions, exception handling, types of exceptions, user defined exceptionsFiles in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python.UNIT-IV10 Hrs.Object Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism.Reference Books *	lists, tuple , Dictionaries.			
Exceptions: exceptions, exception handling, types of exceptions, user defined exceptions Files in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. UNIT–IV 10 Hrs. Dbject Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism. Reference Books *		UNIT–III		10 Hrs.
Files in python: files, types of files in python, opening a file, closing a file, working with text files containing strings, working with binary files, pickle in python. UNIT–IV 10 Hrs. Dbject Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism. Reference Books *	Exceptions: exceptions, exce	ption handling, types of exceptions, user define	d exceptions	
containing strings, working with binary files, pickle in python. UNIT–IV 10 Hrs. Object Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism. Reference Books *	Files in python: files, types	of files in python, opening a file, closing a file	e, working wit	th text files
UNIT-IV10 Hrs.Object Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism.Reference Books *	containing strings, working	vith binary files, pickle in python.		
Object Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism.		UNIT–IV		10 Hrs.
Python, The Constructor Method, Classes with Multiple Objects, Class Attributes versus Data Attributes, Encapsulation, Inheritance, The Polymorphism. Reference Books *	Object Oriented Programm	ing: Classes and Objects, Creating Classes in Py	ython, Creatin	g Objects in
Encapsulation, Inheritance, The Polymorphism. Reference Books *	Python, The Constructor Me	hod, Classes with Multiple Objects, Class Attribu	ites versus Dat	a Attributes,
Reference Books *	Encapsulation, Inheritance,	Гhe Polymorphism.		
Reference Books *				
	Reference Books *			
Text Books	Text Books			
1. Core Python Programming by Dr. R.NageswawaRao, Dreamtech press, 2 nd Edition 2018.	1. Core Python Program	ming by Dr. R.NageswawaRao, Dreamtech press	s, 2 nd Edition 2	018.
Reference Books	Reference Books			
1. Introduction to Python Programming by Gowrishankar S. Veena A., CRC Press Taylor & Francis	1. Introduction to Pyth	on Programming by Gowrishankar S. Veena A. , C	RC Press Taylo	or & Francis
Group, 1 st Edition 2019.	Group, 1 st Edition 20	9.		
2. Python Programming by Michael Urban and Joel Murach , Mike Murach Elizabeth Drake, 1 st	2. Python Programming	, by Michael Urban and Joel Murach , Mike M	urach Elizabet	th Drake, 1 st
Edition,2016	Edition,2016			
Course Outcomes**	Course Outcomes**			
After completion of the course student will be able to	After completion of the cou	rse student will be able to		
1. Explain syntax and semantics of different statements and functions in Python.	1. Explain syntax and s	emantics of different statements and functions	in Python.	
2. Demonstrate the use of strings, files, lists, dictionaries and tuples in simple applications.	2. Demonstrate the us	of strings, files, lists, dictionaries and tuples in	simple applic	ations.
3. Demonstrate Exception Handling and file operations.				

4. Explain class, objects, polymorphism, inheritance.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			I	Prog	ram	ime	Out	con	nes	(POs)			Prog Outc	ram Spo omes (F	ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	-	2	2	-	-	-	-	-	-		3	
CO2	3	2	3	-	2	1	-	-	-	-	-	-		3	
CO3	3	2	3	-	3	-	-	-	1	-	-	-		3	
CO4	2	1	1	-	2	1	-	-	1	-	-	1		3	

S 2	UBJECT CODE: 21UMA300M		Credits: Mandatory									
-	L:T:P -	Bridge Course Mathematics -I	CIE Mark	s: 50								
To	tal Hours/Week:03		SEE Marks: 50									
		UNIT-I		10 Hrs.								
Differential Calculus: Review of elementary calculus, Polar curves - angle between the radius vector												
and tangent, angle between two curves, pedal equation. Taylor's and Maclaurin's series expansions												
for one variable (statements only) without proof. Problems												
UNIT-II 10 Hrs.												
Partial differentiation: Introduction to function of several variables, Partial derivatives; Euler's theorem - problems. Total derivatives-differentiation of composite functions. Jacobians-problems												
		UNIT–III		10 Hrs.								
Integral Calculus: Evaluation of double and triple integrals. Area bounded by the curve. Beta and Gamma functions: Definitions, Relation between beta and gamma functions-problems.												
		UNIT–IV		10 Hrs.								
Vecto	or Calculus: Vector Dif	ferentiation: Scalar and vector fields. Gradient, d	irectional der	ivative; curl								
and divergence-physical interpretation; solenoidal and irrotational vector fields- problems												
Refere	ence Books *											
Textbo	ooks:											
1.	B.S. Grewal: Higher E	ngineering Mathematics, Khanna Publishers, 43	rd Ed., 2015.									
2.	E. Kreyszig: Advance	d Engineering Mathematics, John Wiley & Sons,	10 th Ed.(Repr	int), 2016.								
Refere	ence Books:		,									
1.	Coloulus: Early Trans	riy Transcendentals, Single Variable (13th Editio)	n)									
2.		Barrett : "Advanced Engineering Mathematics"	6 th Edition	McGraw-Hill								
5.	Book Co., New York.	1995.	, o Luition,									
4.	B.V. Ramana: "Highe	r Engineering Mathematics" 11 th Edition, Tata M	lcGraw-Hill, 20	010.								
5.	5. Veerarajan T.," Engineering Mathematics for First year", Tata McGraw-Hill, 2008.											
6.	N.P.Bali and Manish	Goyal: A Text Book of Engineering Mathematics,	, Laxmi Publisl	hers, 7 th Ed.,								
	2010.											
After o	completion of the cou	rse student will be able to										
1.	1. Apply the knowledge of calculus to solve problems related to polar curves and its											
2	applications in determining the bentness of a curve.											
۷.	functions and solve	n partial unreferitiation to calculate falles of problems related to composite functions and la	contians	iuitivaliate								
3.	Apply the concept of	f multiple integrals and their usage in computin	ig the area an	d volumes.								
4.	Apply the knowledge	e of vector calculus to solve the engineering pro	oblems									

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes	Programme Outcomes (POs)													Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	2	2	0	0	0	0	0	0	0	0	0	3	0	0		
CO2	3	2	2	0	0	0	0	0	0	0	0	0	3	0	0		
CO3	3	2	2	0	0	0	0	0	0	0	0	0	3	0	0		
CO4	3	2	2	0	0	0	0	0	0	0	0	0	3	0	0		

** Each CO to be written with proper action word and should be assessable and quantifiable

SUBJECT CODE: 21UMA401C		Credits: 03									
L:T:P – 3-0-0	Statistics and Probability Distributions	CIE Marks: 50									
Total Hours/Week: 03		SEE Mark	<s: 50<="" td=""></s:>								
UNIT-I 10 Hrs.											
Statistics: Curve fitting by the method of least squares $y=a+bx$, $y=ab^x$, $y=a+bx+cx^2$ Correlation, expression for the rank correlation coefficient and regression.											
UNIT–II											
Probability: addition rule, conditional probability, multiplication rule, Baye's rule. Discrete and											

continuous random variables-Probability density function, Cumulative distribution function, Problems on expectation and variance

10 Hrs.

UNIT-III

Probability distributions: Binomial distributions Poisson distributions and Normal distributions. Concept of joint probability, Joint probability distributions.

UNIT-IV 10 Hrs. Markov chains: Markov chains: Introduction, Probability vectors, Stochastic Matrices, Fixed Points and Regular stochastic Matrices, Markov chains, higher transition probabilities, stationary distribution of regular Markov chains and absorbing states.

Reference Books *

- 1. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New Delhi.
- 2. Theory and problems of probability by Seymour Lipschutz (Schaum's Series).
- 3. Advanced Engineering Mathematics by H. K. Dass
- 4. Advanced Engineering Mathematics by E Kreyszig (John Wiley & Sons)
- 5. Probability and stochastic processes by Roy D. Yates and David J. Goodman, wiley India pvt.ltd 2nd edition 2012.
- 6. Advanced Engineering Mathematics by Peter V. O'Neil.Author/s last Name, initial (Year), Book Title (edition), Publisher

Course Outcomes**

After completion of the course student will be able to

- 1. To apply the least square sense method to construct the specific relation for the given group of data.
- 2. To understand the concept of probability.
- 3. To apply the concept of probability to find the physical significance of various distribution phenomena.
- 4. To understand the concepts of probability distributions.
- 5. To apply the concept of Markov Chain for commercial and industry purpose.

Course Outcomes	Programme Outcomes (POs)											Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2											1	2	
CO2	1	2											1	2	
CO3	1												1		
CO4	1												1		
CO5	1												1		

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable
| 21UEC402C | | Credits: 03 |
|----------------------|---------------------|---------------|
| L:T:P - 2 : 2: 0 | Signals and Systems | CIE Marks: 50 |
| Total Hours/Week: 04 | | SEE Marks: 50 |

UNIT-I	10 Hrs.
Introduction: Definition of signals and systems, classification of signals, elementar basic operations on signals, interconnection of systems and operations, properties of syst	y signals, tems.
	10 Hrs
Time domain representation of LTI systems: Convolution sum, convolution integral, impuls representation. Properties of impulse response.	se response
UNIT–III	10 Hrs.
their use in Fourier representation of signals: Introduction to complex sinusoidal their use in Fourier representation of periodic signals (brief review of CTFS and DTFS). time Fourier transform, Discrete time Fourier Transform (DTFT), properties of DTFT and a	signais and Continuous ipplications.
UNIT–IV	10 Hrs.
transform with Fourier transforms. Inverse Z-transform, transform analysis of L transfer function, stability and causality, and solution of difference equations using Z-tran	TI systems,
Reference Books *	
 Simon Haykin and Barry Van Veen, Signals and Systems (2nd Edition), John Wiley &Son Michel J. Roberts, 2003, Signals and Systems (2nd Edition), Tata McGraw Hill Allan V. Oppenheam, Alan S. Willsky, and Hamid Nawab, 1997, Signals and Edition), Pearson Education Asia. 	s Systems (2 nd
Course Outcomes**	
After completion of the course student will be able 1. Represent, characterize, and analyze CT and DT signals and systems. 2. Analyze CT and DT systems in time domain using convolution.	

- **3.** Analyze CT and DT systems in frequency domain, using Fourier tools like CTFT and DTFT.
- **4.** Apply z-transform and its properties in the analysis of discrete-time signals and systems.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes (POs) Program Specific Outcomes (PSOs)													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	0	0	0	0	0	0	0	0	0	3	0	0
CO2	3	3	1	0	0	0	0	0	0	0	0	0	3	0	0
CO3	3	3	1	0	0	0	0	0	0	0	0	0	3	0	0
CO4	3	2	1	0	0	0	0	0	0	0	0	0	3	0	0

21UEC403C	Linear Integrated Circuits and Its	Credit	its: 03	
L:T:P - 3 : 0 : 0		CIE Mark	s: 50	
Total Hours/Week: 03	Applications	SEE Mark	ks: 50	
	UNIT-I		10 Hrs.	
Differential Amplifiers:	Introduction, differential amplifier, differe	ential amplif	ier circuit	
configurations, dual- input	balanced output differential amplifier, dual- i	nput unbalan	ced output	
differential amplifier, single	e input balanced output differential amplifier,	single input	unbalanced	
output differential amplifie	r, constant current bias, current mirror, cascac	led differenti	al amplifier	
stages, level translator.		_		
Introduction to operational	amplifiers: Introduction, block diagram represe	ntation of a ty	/pical	
op-amp, the ideal op-amp, e	quivalent circuit of an op-amp, ideal voltage tran	isfer curve, op	en loop op-	
amp configurations.				
Self study component: Num	nericals on differential amplifiers		40.11	
			10 Hrs.	
An op-amp with negative fe	edback: Block diagram representation of feedba	ick configurati	ion, voltage	
series feedback amplifier, vo	bitage shunt feedback amplifier, differential amp	lifier.		
I ne practical op-amp: Input	coffset voltage, input bias current, input offset c	urrent, total c	utput	
offset voltage, common mo	de configuration, common mode rejection ratio	, power supp	ly rejection	
ratio, siew rate	arive gain input resistance, of differential empli	fiar with three		
Sell study component: 10 d		ner with three		
Conoral applications: The p	UNIT-III	ng amplifiars	IU IIIS.	
differentiator	eaking amplimer, summing, scaling and average	ng ampimers,	milegrator,	
Active filters: First order and	d second order low pass butter worth filter first	order and sec	ond order	
high pass butter worth filter	bigher order filters band pass filter band rejection	t filters		
Self study component: To st	tudy All pass filter			
· · · · · · · · · · · · · · · · · · ·	UNIT-IV		10 Hrs.	
Oscillators and waveform g	enerator: Introduction, phase shift oscillator, wi	en bridge osci	llator.	
square wave generator, tria	ngular wave generator.		,	
Comparators and converter	s: Basic comparator, zero crossing detector, sam	ple and hold	circuit.	
The 555 Timer: Block dia	agram, connection diagram, 555 timer as A	stable and I	Vonostable	
multivibrators				
Self study component: To st	tudy voltage-controlled oscillator and Schmitt tri	gger		
Reference Books *				
1. Gayakwad Ramakanth A	. "Operational Amplifiers and Linear Integrated (Circuits", 3 rd 8	4 th Edition,	
	a later and Charles to W and E live			
2. D. Roy Choudary, "Linea	A A A A A A A A A A A A A A A A A A A			
	r Integrated Circuits", 2 ^m Edition.			
	r Integrated Circuits", 2 ^m Edition.			
	r Integrated Circuits", 2 ^m Edition.			
	r Integrated Circuits", 2 ^{ma} Edition.			

Course Outcomes**

After completion of the course student will be able to

1. Identify and analyze the different configurations of differential amplifier.

2. Analyze the different feedback amplifiers and various parameters of practical op-amp.

3. Design the active filters and amplifiers using op-amp.

4. Design waveform generators, data comparators and converters.

Course Outcomes		Programme Outcomes (POs) Progra Outcom											am Specific omes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	1	-	-	-	1	-	-	-	3	1	-
CO2	3	3	1	1	1	-	-	-	1	-	-	-	3	1	-
CO3	3	3	2	2	1	1	1	-	1	-	1	1	3	1	-
CO4	3	2	2	1	1	1	1	-	1	-	1	1	3	1	-

21UEC404C		Credits: 03
L:T:P-3:0:0	Analog and Digital Communication	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hrs.
Linear modulation: Baseba	and and carrier communication, time do	main and frequency
domain description, generatio	on and detection of Amplitude Modulation (AM)	waves.
DSB-SC modulation: Time a	and frequency domain representation, genera	tion and detection of
SSB modulation: Time dom	ain representation of SSP signal generation	and dataction of SSP
modulated waves Quadratu	re Amplitude Modulation (OAM)	and detection of 55b
Vestigial sideband modulat	tion: Frequency domain representation gen	eration and detection
of VSB comparison of amplitu	ude modulation techniques super heterodyne r	
	UNIT-II	10 Hrs.
Angle modulation: Conce	pt of angle modulation, relation betweer	frequency and
phase modulation, bandwidth	of angle modulated wave.	
Generation of FM: direct a	and indirect methods, PLL, demodulation of	FM, pre-emphasis and
de-emphasis, FM radio.		
	UNIT–III	10 Hrs.
Digital Communication: Mo	del of digital communication systems Sampli	ng process: Sampling
Theorem, quadrature samplir	ng of Band pass signal, reconstruction of a mes	sage from its samples,
signal distortion in sampling.	Line codes, unipolar, polar and Manchester c	odes and their power
spectral densities.		
	UNIT-IV	10 Hrs.
Digital Modulation Technique	es: Digital Modulation formats, Coherent binary r	nodulation techniques
(ASK, PSK, FSK), Probability	of error for each ASK, PSK, FSK. Coherent q	uadrature modulation
techniques, MSK, (Without	derivation of probability of error equation).	Non-conerent binary
Reference Books	iliu DPSKJ.	
1. B. P. Lathi "Modern	Digital and Analog Communication Systems	s", 3 rd Edition, Oxford
University, 2006		
2. Simon Haykin, "Digital o	communications", John Wiley, Edition 2014	
3. George Kennedy "Ele	ectronic Communication Systems", 3 ^{re} Edition	, Tata McGraw Hill
Publication, 1984	isation Systems" 2rd Edition B. S. Publication	ac 2000 Simon Havkin
4. B. P. Latin Communication System	mcation Systems, 3 th Edition, B. S. Publication	is, 2009 Simon Haykin
5 John G Proakis & M	Masoul salehi" Fundamental of Communicati	on System" Pearson
Education Edition 2014	1	on system realson
6 Bernard Sklar and P	Prahitrakumary Ray "Digital Communication	Fundamentals and
Applications", Pearson	Publications, 2010	
7. K. Sam Shanmugam. "D	Digital and Analog Communication Systems". Joh	n Wiley & Sons. 2006
		,

Course Outcomes

After completion of the course student will be able to

- 1. Compute spectrum of modulated and demodulated signals.
- 2. Analyze amplitude modulation and demodulation circuits.
- 3. Do analysis of angle modulation and demodulation techniques.
- 4. Design sampling and reconstruction circuit for given different sampling frequencies.
- 5. Design different digital modulation /demodulation techniques.

Course Outcomes		Programme Outcomes (POs)									Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	0	1	1	1	0	0	0	0	0	3	0	0
CO2	3	2	2	0	1	1	1	0	0	0	0	0	3	0	0
CO3	3	3	2	0	1	0	0	0	0	0	0	0	3	0	0
CO4	3	3	1	0	1	0	0	0	0	0	0	0	3	0	0
CO5	3	3	1	0	1	0	0	0	0	0	0	0	3	0	0

SUBJECT CODE: 21UEC405C		Credits: 03	
L:T:P - 3 : 0: 0	8051 Microcontroller	CIE Marks: 50	
Total Hours/Week: 03		SEE Marks: 50	

UNIT-I	10 Hrs.
Microprocessors and Microcontrollers: Introduction, Harvard Vs Von Neumann a	rchitecture,
comparison between microprocessors and microcontrollers, 8051 Architecture: General	features of
8051 Microcontroller, 8051 block diagram, programming model, pin description, 8051 os	scillator and
clock, general purpose and special function registers, internal RAM and ROM, stack, ir	າput/output
pins, ports and circuits, external memory.	
UNIT–II	10 Hrs.
8051 Instructions and Programming: addressing modes, types of instructions, instructi	ion set, data
move instructions, external data move instructions, arithmetic instructions, logical inst	tructions,
jump and call instructions, bit-addressable instructions, programs using all the above ins	tructions
and concepts.	1
UNIT–III	10 Hrs.
Programming peripherals in assembly: Timer and counter programming. Serial Port Pro	ogramming:
Basics of serial communication, 8051 connection to RS232, 8051 serial port programming	. Interrupts:
8051 interrupts, Programming timer interrupts.	-
UNIT–IV	10 Hrs.
Programming external hardware interrupts and serial communication interrupts. Interfac	ing:
Introduction, need for interfacing, interfacing the following devices using assembly-LCI	D module,
ADC808/DAC808, key-pad, stepper motor. Interfacing with the 8255: Programming the 8	255,
Interfacing the 8255.	
Reference Books *	
1. Kenneth J. Ayala, "The 8051 Micro controller Architecture, Programming & Applicatio	ns",
Penram International, 2nd Edition,1996	
2. Muhammad Ali Mazidi, and Janice GillispieMazidi, "The 8051 Micro controller and Em	bedded
Systems", Pearsons Education, 2 nd edition, 2007.	
3. Craig Steiner, "The 8051/8052 Microcontroller: architecture, assembly language, and	
Hardware interfacing", WP Publishers and Distributors, 2006.	
4. David Calcutt, Fred cwon, "8051 microcontroller", Elsevier, 1 st Edition, 2004.	
5. Dr.UmaRao and Dr.AndhePallavi, "The 8051 microcontroller architecture, progra	amming and
applications", Pearson Education, 2010.	
Course Outcomes**	
After completion of the course student will be able to	
1. Comprehend the architecture of 8051 microcontroller.	
2. Write programs in assembly language for 8051 to explore its capabilities.	
3. Program inbuilt peripheral like timer/counter, serial and interrupt peripheral i	in assembly
language.	-

4. Interface devices like LCD, Keypad, DAC, ADC, Stepper motor and PPI 8255 for different applications using assembly language.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes (POs)								Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	1	1	1	3	1	1	0	0	0	3	0
CO2	3	2	2	1	1	2	1	3	2	1	1	1	0	3	0
CO3	3	2	3	2	2	3	2	3	3	3	3	2	0	3	0
CO4	3	2	2	2	3	2	2	3	2	2	2	2	0	3	0

SUBJECT CODE:21UEC406L		Credits: 01
L:T:P – 0-0-3	Communication Engineering Laboratory	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

LIST OF EXPERIMENTS
1. Design and verification of second order active low pass filter
Design and verification of second order active high pass filter
Design and verification of second order active band pass filter
Design and verification of second order active band elimination filter
5. Realization of Amplitude Modulation (AM) and demodulation for a given modulation index
6. Realization of Frequency Modulation (FM)
7. Realization of Pulse Width Modulation (PWM)
8. Realization of Pulse Position Modulation (PPM)
9. Realization of Pulse Amplitude Modulation (PAM)
10.Realization of Pre-emphasis and De-emphasis circuits
11.Realization of frequency demodulation using PLL
12.Generation of PN sequence
Course Outcomes**
After completion of the course student will be able to
1. Design and verify the frequency response of active filters for a given specifications.

- 2. Design and characterize AM and FM modulation and demodulation circuits.
- 3. Construct pre-emphasis and de-emphasis circuits.
- 4. Verify the PAM, PWM & PPM circuits.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes	Programme Outcomes (POs) Program Spe Outcomes (PS)							ecific PSOs)							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	1	1	0	0	0	2	2	0	1	3	0	0
CO2	3	2	2	1	1	0	0	0	2	2	0	1	3	0	0
CO3	3	2	2	1	1	0	0	0	2	2	0	1	3	0	0
CO4	3	2	2	1	1	0	0	0	2	2	0	1	3	0	0

SUBJECT CODE: 21UEC407L			Credits	5: 01
L:T:P – 0-0-3		Microcontroller Laboratory	CIE Mark	s: 50
Total Hours/Weel	c: 03		SEE Mark	s: 50
		UNIT-I		10 Hrs.
1.	Move	an 8-bit data byte to a register/memory using a	ill addressing r	nodes.
2.	BIOCK	of data transfer in internal RAM locations.		
3.	Excha	nge block of data internal/external memory loca	ations.	
4.	Avera	ge of n-eight bit numbers.		
5.	Progra	ams on basic arithmetic operations.		
6.	Progra	ams using logical instructions.		
1.	Searci	n a byte in a given array.		
8.		argest/smallest number in an array.	onding and an	
9.	Sortin	g the given array of numbers in ascending/desc	ending order.	
10.	Code	conversion programs.		
11.	Dotor	ning Filonacci socias of a siven number		
12.	Deter	mine Fibonacci series of a given number.		
13.	Drogr	ans on social communication		
14.	Drogr	ans on interrunts		
15.	PIOgla	Part-B		
Developing interfaci	ng Fmh	edded 'C' programs in keil cross-compiler fusi	ng machine co	de on flash
board/Circuit and te	sting th	e code.		
	C			
1.	Stepp	er motor		
2.	DC mo	otor		
3.	Buzze	ſ		
4.	LCD			
5.	Кеура	d		
6.	Analo	g to Digital Conversion (ADC)		
7.	Digita	l to Analog Conversion (DAC)		
8.	Seven	Segment Display (SSD)		
Course Outcomes**				
After completion of	the cou	rse student will be able to		
1. Condu	ict expe	eriments to understand fundamental concepts	of 8051 micro	controller.
2. Write	efficier	nt programs in assembly level language of the 8	8051 microcon	troller.
3. Write	progra	m to interface different peripherals.		
4. Devel	op the \circ	embedded C program to perform a defined tas	k.	

Course Outcomes				Pro	gram	ime (Out	com	es (POs)		Program Sp Outcomes			ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	0	0	0	0	0	0	0	0	0	0	3	
CO2	3	2	2	0	1	0	0	0	0	0	0	0	0	3	
CO3	3	2	3	0	2	0	0	0	0	0	0	0	0	3	
CO4	3	2	2	0	3	0	0	0	0	0	0	0	0	3	

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

SUBJECT CODE: 21UEC408T	Laternalsia I	Credits: 02
L:T:P	internsnip - i	CIE Marks: 100
Total Hours/Week:		SEE Marks:

Course Plan

Each student shall identify current topic relevance to Electronics and Communication Engineering branch, get approval of concern faculty, undergo the domain specific training, study it thoroughly, apply the skills to develop software/hardware module and prepare own report and present in the class individually.

Course Outcomes**

After completion of the course student will be able to

- 1. Demonstrate the skills acquired during the internship
- 2. Develop the small projects (Software/Hardware) by understanding the real time applications.
- 3. Integrate the different modules developed during the internship.
- 4. Develop the technical document for the internship.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			F	Prog	ram	nme	Out	com	ies (POs)			Prog Outo	ram Sp omes (ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	2		3		1					2	1	2	3
CO2	3	3	2		3		2					2	1	1	2
CO3	3	3	2		3		3		1	3		2	1	1	1
CO4	1	1	1		3		2		1	3		2	2	1	1

SUBJECT CODE: 21UMA400M	Deides Course Mathematics II	Credits:
L:T:P – 3-0-0	Bridge Course Mathematics-II	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.
Differential Equations-1:Ordinary differential equations of first order: N	/ariable
seperable, Homogeneous. Exact form and reducible to exact differential equations.	Linear and
Bernoulli's equation.	
UNIT–II	10 Hrs.
Differential Equations-2:Second and higher order linear ODE's with constant coefficie	nts-Inverse
differential operator, method of variation of parameters (second order); Cauchy's and	d Legendre
homogeneous equations.	
UNIT–III	10 Hrs.
Laplace Transform: Introduction, Definition of Laplace Transform, Laplace Transform of st	andard
functions, Properties: Shifting, differentiation, Integral and division by t. Periodic function,	Heaviside's
Unit step function.	
UNIT–IV	10 Hrs.
Inverse Laplace transforms: Properties, Convolution theorem, Solutions of linear	differential
equations	
Reference Books *	
Text Book:	
1. SB.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 44th Edition, 20	017.
2. Erwin Kreyszing's Advanced Engineering Mathematics volume I and volume I	I,wiley India
Pvt.Ltd.,2014.	
3. H K Das, Higher Engineering Mathematics	
Reference Books:	
1. Erwin Kreyszing's Advanced Engineering Mathematics, wiley India Pvt.Ltd., 2014.	
2. Elementary Differential Equations by Earl D. Rainville and Phillip E, Bedient, Sixth E	dition.
Course Outcomes**	
After completion of the course student will be able to	
Anter completion of the course student will be able to	olutions
2 Solve second and higher order linear differential equations	solutions.
2. Solve second and higher order hilled differential equations. 3. Apply Laplace transforms for standard functions and its properties.	
Apply Laplace transforms for standard functions	
4. Apply inverse capiace transforms for standard functions	

- 5. Apply Inverse Laplace transforms for solve differential equations.
- * Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Prog	ram	nme	Out	tcon	nes	(POs)			Prog Outc	ram Sp omes (I	ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2													
CO2	1	2													
CO3	1														
CO4	1														

Syllabus for B.E. V & VI – Semester (For students admitted to I year in 2021-22)

SUBJECT CODE: 21UEC501C		Credits: 03
L:T:P – 3-0-0	Digital Signal Processing	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

Г

UNIT-I	10 Hrs.
Discrete Fourier Transform: Frequency domain sampling and reconstruction of dis signals, DFT as a linear transformation, its relationship with other transforms, multiplication of two DFTs, circular convolution and additional properties of DFT. App	crete time properties: plication of
DFT in linear filtering: overlap add and overlap save method.	
UNIT–II	10 Hrs.
Fast Fourier Transform Algorithms: Need for efficient computation of DFT, Radix 2 FFT for computation of DFT and IDFT: Decimation in time and decimation in frequency a Goertzel algorithm and chirp-Z transform algorithm.	algorithms algorithms.
UNIT–III	10 Hrs.
IIR filter design: Characteristics of commonly used analog filters – Butterworth and filters. Design of IIR filters from analog filters (i.e. Butterworth and Chebyshev), Transtechniques: Impulse invariance method, Approximation of derivative (Backward difference) method. Bilinear transformation method.	Chebyshev sformation erence and
UNIT–IV	10 Hrs.
 FIR filter design: Introduction to FIR filters, Design of FIR filters using windowing (Re Hamming, Hanning and Bartlet) method, FIR filter design using frequency samplin Implementation of discrete time systems - Structures for IIR and FIR systems: Direct for form II, Cascade and Parallel realization. Reference Books * Textbook: Proakis and Manolakis, "Digital Signal Processing-Principles Algorithms and Applic Publication, III Edition, 1997. Reference Books: Oppenheim and Schaffer, "Discrete Time Signal Processing" PHI Publication, III 2003. 	ectangular, g method. m I, Direct cations" PHI Edition,
Course Outcomes**	
 After completion of the course student will be able to 1. Compute and use DFT for linear filtering applications. 2. Calculate DFT and IDFT using FFT and IFFT algorithms. 3. Design IIR filters using Butterworth and Chebyshev approximations and c structures. 4. Design FIR filters using windowing and frequency sampling techniques and c structures. 	draw their draw their

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pr	ogra	mme	Out	come	es (PC	Ds)			Pro: Out	gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	0	1	0	0	0	0	0	0	0	3	0	0
CO2	3	3	1	0	1	0	0	0	0	0	0	0	3	0	0
CO3	3	3	3	0	1	0	0	0	0	0	0	0	3	0	0
CO4	3	2	3	0	1	0	0	0	0	0	0	0	3	0	0

SUBJECT CODE: 21UEC502C		Credits: 03
L:T:P – 3-0-0	Control Engineering	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	xx Hrs.
System modeling: Definition of control system, Concept of feedback and its significance,	open loop
and closed loop systems, Modeling of Electrical, Mechanical and Electromechanica	l systems,
Differential equations of physical system. Transfer function, Block diagram represent	tation and
Reduction technique, Signal flow graph representation and reduction using Mason's gair	ı formula.
UNIT–II	xx Hrs.
Time domain analysis of control systems: Introduction, standard test signals, Unit step re	esponse of
a second order system, Steady state error analysis, time domain specifications. Stabili	ty analysis
technique: Concept of stability, Location of Roots in the s-plane for stability, m	ethods of
determining stability, Routh-Hurwitz stability criterion.	
UNIT–III	xx Hrs.
Root-Locus Technique: Introduction, Procedure for constructing Root-locus. Stability and	alysis using
root locus. Frequency Domain Analysis: Introduction, Bode plots, Gain and Phase of	cross over
frequency, gain margin, phase margin, Frequency domain specifications-resonant peak	, resonant
frequency, and bandwidth.	
UNIT–IV	xx Hrs.
Polar plots, Nyquist stability criterion; Principle of argument, mapping, Nyq	uist path,
Nyquistcriterion, Nyquist Plot and stability analysis. State Space Analysis: Introduction,	concept of
state and variables, state model, Non homogeneous solution of a state equation.	
Reference Books *	
1. Nagrath and Gopal, "Control System Engineering", New Age publication.	
2. K. Ogeta, "Modern control engineering", Person education, Asia/PHI 4 th edition, 2	2002.
3. Benjamin C.Kuo, "Automatic Control Systems", PHI 7 th edition.	
4. Richard C. Dorf and Robert. H. Bishop, "Modern Control Systems", Person Ed	ducation, 8
thEdition. 2002.	,
5. M. Gopal. "Control Systems-Principles and Design". TMH. 2nd Edition. 2002.	
6. David, K. Chng, "Analysis of Linear systems". Narosa publishing house, 1996	
Course Outcomee**	
After completion of the course student will be able to	
1. Mathematically model electrical, mechanical and electromechanical control system	ems.
2. Characterize the control systems in time domain.	
3. Analyze stability of a control system using root locus technique and frequence	cy domain
analysis using Bode plotting techniques.	
4. Determine the stability of control systems using polar and Nyquist plotting tech	nique and
represent the control systems using state space techniques.	

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pr	ogra	mme	Out	come	es (PC	Os)			Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	2	-	2	2	-	-	-	-	-	-					
CO2	3	2	3	-	2	1	-	-	-	-	-	-					
CO3	3	2	3	-	3	-	-	-	1	-	-	-					
CO4	2	1	1	-	2	1	-	-	1	-	-	1					

SUBJECT CODE: 21UEC503C		Credit	s: 03
L:T:P – 3-0-0	CIVIOS Digital VLSI Design	CIE Mark	ks: 50
Total Hours/Week: 03		SEE Marl	ks: 50
	UNIT-I		10 Hrs.

Introduction: A Brief History, Preview, MOS Transistors, CMOS Logic, CMOS Fabric	cation and
Layout, Design Partitioning. MOS Transistor Theory: Introduction, Long- Ch	annel I-V
Characteristics, C-V Characteristics (simple MOS capacitance models), Non ideal I-V E	ffects, DC
Transfer Characteristics. CMOS Processing Technology:	
Introduction, CMOS Technologies.	
UNIT–II	10 Hrs.
Delay: Introduction, Transient Response, RC Delay Model, Linear Delay Model (Log	ical effort,
parasitic delay, delay in logic gate, drive), Logical Effort of Paths, Power:	
Introduction, Dynamic Power, Static Power.	
UNIT–III	10 Hrs.
Interconnect: Introduction (wire Geometry), Interconnect Modeling, Interconnect Imp	act (Delay,
Energy, Cross talk). Combinational Circuit Design: Introduction, Circuit families,	
Silicon-On-Insulator Circuit Design.	
UNIT–IV	10 Hrs.
Sequential Circuit Design: Introduction, Circuit Design of Latches and Flip Flops (co	nventional
CMOS latches, conventional CMOS flip flops, pulsed latches, resettable latches and	flip flops,
enabled latches and flip flops, incorporating logic into latches, dual edge triggered flip fl	lops. Array
Subsystems: Introduction, SRAM (SRAM cells, ROW circuitry, column circuitry),	Read-Only
Memory, Serial Access Memories, Content	
Addressable Memory, Programmable Logic Arrays.	
Reference Books *	
Text Book:	
1. Neil H. E. Weste, David Harris "CMOS VLSI Design A Circuits and Systems P	erspective"
2 Pearson Education Publisher Fourth Edition 2015	
Reference Books:	
1. Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic "Digital Integrate	d Circuits A
Design	
2. Perspective" Pearson Education Publisher. Second Edition. 2010.	
3. John P Uvemura "Introduction to VLSI Circuits and Systems" Wiley Publica	ation 2002.
4. R. Jcob Baker, Harry W. Li and David E Boyce "CMOS Circuit Design, I	avout. and
Simulation"	
Course Outcomes**	
After completion of the course student will be able to	
Arter completion of the course student will be able to	nrocassas
I I I I I I I I I I I I I I I I I I I	hinresses

and MOSFET transistors in VLSI design.

- 2. Draw RC equivalent circuit of CMOS circuits and estimate delay and power.
 - 3. Model & design of interconnects in chips, design of combinational circuits.
 - 4. Design basic buildings of sequential and memory blocks using MOSFET transistors.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Prog	gramn	ne O	utco	mes	(PO	s)			Prog Outo	gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	0	0	0	0	0	0	0	0	0	3	1	0
CO2	3	3	3	0	0	0	0	0	0	0	0	0	3	2	0
CO3	3	3	3	0	0	0	0	0	0	0	0	0	3	2	0
CO4	3	3	3	0	0	1	2	0	0	0	0	0	3	2	0

L:T:P – 0-0-3 CIVIOS DIgital VLSI Laboratory CIE Marks: 50	SUBJECT CODE: 21UEC504L		Credits: 01	
	L:T:P – 0-0-3	CIVIOS DIgital VLSI Laboratory	CIE Marks: 50	
Total Hours/Week: 03 SEE Marks: 50	Total Hours/Week: 03		SEE Marks: 50	

	NAME OF THE EXPERIMENT
Design followir	ng CMOS/TG based circuits with given specifications* and complete the VLSI design
flow mentione	d below using appropriate tool:
a)	Draw the schematic and verify the following
i	i) DC Analysis ii)Transient Analysis
b)	Draw the Layout and verify the DRC,ERC
c)	Check for LVS
d)	Extract RC and back annotate the same and verify the design.
1)	CMOS inverter
2)	CMOS two input NAND gate
3)	CMOS two input NOR gate
4)	CMOS two input OR gate
5)	CMOS two input AND gate
6)	TG based two input XOR and XNOR gates
7)	Negative edge triggers D flip flop using TGs and inverters
8)	4:1 MUX using TGs and inverters
9)	3- Bit up counter
10)	3-Bit SISO shift register
*An appropriat	e constraint should be given
Course Outcom	es**
After completio	n of the course student will be able to
1. D	Design CMOS/ TG based gates, MUX, flipflops, counters and shift register.
2. D	Draw the layout, run DC and transient analysis for designed CMOS standard cells.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pr	ogra	mme	Out	come	es (PC	Os)			Pro Out	ogram Specific tcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	1	0	2	0	3	0	0	0	0	0	0	0	3	0	0	
CO2	1	0	2	0	3	0	0	0	0	0	0	0	3	0	0	

SUBJECT CODE: 21UEC505E		Credits:03
L:T:P – 3-0-0	JAVA Programming	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-Ixx Hrs.Introducing classes, Objects and Methods: Introducing Classes, Class Fundamentals, The
GeneralForm of a Class, A Simple Class, Declaring Objects, A Closer Look at new, Assigning Object
Reference Variables, Introducing Methods, Adding a Method to the Box Class, Returning a Value,
Adding a Method That Takes Parameter , Constructors, Parameterized Constructors, The this
Keyword, The finalize() Method, A Stack Class. A Closer Look at Methods and Classes : Overloading
Methods , Overloading Constructors, Using Objects as Parameters, A Closer Look at Argument
Passing, Returning Objects, Recursion, Introducing Access Control, Understanding static,
Introducing final, Arrays Revisited, Introducing Nested and Inner Classes, Exploring the String Class,
Using Command Line Arguments.

UNIT–II

xx Hrs.

Inheritance: Inheritance, Inheritance Basics, Member Access and Inheritance, Example, A Super class Variable Can Reference a Subclass Object, Using super, Using super to Call Super class Constructors, A Second Use for super, Creating a Multilevel Hierarchy, When Constructors Are Called, Method Overriding, Dynamic Method Dispatch, Why Overridden Methods?, Applying Method Overriding. Using Abstract Classes, Using final with Inheritance, Using final to Prevent Overriding, Using final to Prevent Inheritance, The Object Class. Packages and Interfaces: Packages, Defining a Package, Finding Packages and CLASS PATH, A Short Package Example, Access Protection, An Access Example, Importing Packages, Interfaces, Defining an Interface, Implementing Interfaces, Nested Interfaces.

UNIT-III

xx Hrs.

Exception Handling : Exception-Handling Fundamentals, Exception Types, Uncaught Exceptions, Using try and catch, Displaying a Description of an Exception, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java's Built-in Exceptions, Creating Your Own Exception Subclasses, Using Exceptions . Multithreaded Programming : The Java Thread Model, Thread Priorities, Synchronization, Messaging, The Thread Class and the Runnable Interface, The Main Thread, Creating a Thread, Implementing Runnable, Extending Thread, Creating Multiple Threads, Using is Alive() and join().

UNIT–IV

xx Hrs.

Multithreaded Programming Continuous: Thread Priorities, Inter thread Communication, Deadlock, Suspending, Resuming, and Stopping Threads, Suspending, Resuming, and Stopping Threads. The Applet Class :Two Types of Applets, Applet Basics, The Applet Class, Applet Architecture, An Applet Skeleton, Applet Initialization and Termination, Overriding update(), Simple Applet Display Methods, A Simple Banner Applet, Using the Status Window, The HTML APPLET Tag, Passing Parameters to Applets, get Document Base() and get Code Base(), Applet Context and show Document(), The Applet Stub Interface.

Reference Books *

1. From Complete Reference, "The Complete Reference" 7th edition

2. E. Balagururusamy, "Program with JAVA" 4th edition

3. Herbert Schildt, Dale Skrien, "Java Fundamentals A Comprehensive Introduction" McGraw Hill

4. The JAVA tutorials, 4th Edition by SUN Microsystems

Course Outcomes**

After completion of the course student will be able to

- 1. Use fundamentals of class, objects, methods, operators, constructors.
- 2. Write programs using Inheritance, Super class, methods overriding, object class, final key, packages & interfaces in java code.

3. Handling Exceptions fundamentals, exception hierarchy, exception JAVA Programming fundamentals & Multithreaded Programming concepts.

4. Establish Inter thread communication, set thread priorities, solve deadlock, operations of suspend(),resume(), Stop(). Programming for applets.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ogra	mme	Out	come	es (PC	Os)			Pro: Out	gram Spe comes (P	Specific es (PSOs)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	0	0	0	2	1	0	0	0	0	1	2	0	2	
CO2	3	2	0	0	0	1	1	0	0	0	0	2	2	0	2	
CO3	3	3	0	0	0	1	1	0	0	0	0	3	2	0	2	
CO4	3	2		0	0	1	2	0	0	0	0	3	2	0	2	

SUBJECT CODE:		Credits: 03
21UEC506E	Digital System Design using Verilog	
L:T:P – 3-0-0		CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hrs.
Verilog Description of Cor Assignments, Modeling Statements, Delays in Veri Types and Operators, Sir Registers and Counters Constants, Arrays,	mbinational Circuits, Verilog Modules, Verilog A Flip-Flops Using Always Block, Always Block log, Compilation, Simulation, and Synthesis of Ve mple Synthesis Examples, Verilog Models for Using Verilog Always Statements, Behavioral	Assignments, Procedural s Using Event Control erilog Code, Verilog Data Multiplexers, Modeling and Structural Verilog,
	UNIT–II	10 Hrs.
Design Examples: Introdu Traffic Light Controller, Synchronization and De Integer/Fraction Multiplie	ction, BCD to 7-Segment Display Decoder, A BC State Graphs for Control Circuits, Score -bouncing, A Shift-and-Add Multiplier, Array r, Keypad Scanner, Binary Dividers.	D Adder, 32-Bit Adders, board and Controller, / Multiplier, A Signed
	UNIT–III	10 Hrs.
Read/Write System, Rise System Functions, Compile Hardware Testing and De Sequential Logic, Scan Tes	and Fall Delays of Gates, Named Association er Directives, File I/O Functions, Timing Checks. esign for Testability: Introduction, Testing Comb ting, Boundary Scan, Built-In Self-Test.	, Generate Statements, pinational Logic, Testing
	UNIT–IV	10 Hrs.
Component Test and Ver testing, Test-bench Techni Synchronized display of re application, Design Verif verification library, Using a Reference Books *	rification: Test-bench, Combinational circuit te ques, Simulation control, Limiting data sets, App esults, An interactive test-bench, Random time ication, Assertion Verification, Assertion verif assertion monitors, Assertion templates	sting, Sequential circuit lying synchronized data, intervals, Buffered data fication benefits, Open
 Charles Roth, Lizy Ru Cengage Learning, 201 Zainalabedin Navabi " Palnitkar, Samir. "Ver Professional,2003. Sagdeo, Vivek. "The co 5) Smith, Douglas J., and designing, synthesizir Publications,1998. 	Verilog Digital System Design" Second Edition, N Verilog Digital System Design" Second Edition, N ilog HDL: a guide to digital design and synthe omplete Verilog book". Springer Science & Busin d Alex Foreword By-Zamfirescu. "HDL Chip Desi ng and simulating ASICs and FPGAs using V	Is Design Using Verilog Acgraw Higher Ed,2008 sis" Vol. 1. Prentice Hall ess Media,2007. ign: A practical guide for HDL or Verilog" Doone

Course Outcomes**

After completion of the course student will be able to write

- 1. Verilog code for combinational and sequential circuits.
- 2. Verilog code for a simple digital system for given specifications using different design styles.
- 3. Verilog code using advanced Verilog Concepts.
- 4. Develop Test benches to automate simulation and verification of design.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pr	ogra	mme	Out	come	es (PC	Ds)			Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	1	0	1	1	3	0	0	0	0	0	0	0	0	3	0		
CO2	1	0	1	1	3	0	0	0	0	0	0	0	0	3	0		
CO3	1	0	1	1	3	0	0	0	0	0	0	0	0	3	0		
CO4	1	0	1	1	3	0	0	0	0	0	0	0	0	3	0		

SUBJECT CODE: 21UEC507E	Mobile Communications	Credits	s: 03							
L:T:P - N _L :02 N _T :00 N _P :00	Mobile communications	CIE Mark	s: 50							
Total Hours/Week: 02		SEE Mark	ks: 50							
	UNIT-I		10 Hrs.							
Wireless standard organiz signals, antennas, signal p SOMA, FDMA, TOMA, CDM	ations. Wireless transmission: Frequencies fo propagation. Medium access control: Motivation A.	r radio comr on for specia	munication, lized MAC,							
	UNIT–II		10 Hrs.							
Telecommunication systems: GSM, UMTS and IMT2000, 4GLTE networks, 5G networks over view. Broadcast system: Overview, cyclical repetition of data, digital audio broadcasting, and digital video broadcasting.										
	UNIT–III		10 Hrs.							
Wireless LAN: IEEE802.11 system architecture, protocol architecture, physical layer, medium access controller, MAC management. 802.11b. and 802.11a. Bluetooth: user scenarios, architecture, radio layer.										
	UNIT–IV		10 Hrs.							
Mobile network layer dyna transport layer: Traditional performance enhancing pr	mic host configuration protocol, mobile Ad-hoc TCP , classical TCP improvement, TCP over2.5/3 oxies.	network. Mok G wireless net	oile twork,							
Reference Books *										
 Jochen Schiller, 2003 Gary Mullett, 2006 "In networks ", First Edit 	"Mobile Communications", second edition Pears troduction to wireless telecommunication syste ion Cengage learning	sonEducation. ems and								
Course Outcomes**										
After completion of the co 1. identify the different mo 2. Identify the different arc 3. Design and develop the o 4. Develop different netwo	urse student will be able to obile accessing techniques. hitecture of mobile communications different configurations of LAN systems. ork layer and transport layer protocols.									

Course Outcomes	Programme Outcomes (POs)												Pro: Out	gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	2	-	3	-	-	1	-	1	-	1	1	0	3
CO2	2	-	2	-	3	-	-	1	-	1	-	1	1	0	3
CO3	2	-	3	-	2	-	-	1	-	1	-	1	1	0	3
CO4	2	-	3	-	3	-	-	1	-	1	-	1	1	0	3

SUBJECT CODE: 21UEC535N	Communication Southanna	Credits: 03
L:T:P – 3-0-0 Total Hours/Week: 03	Communication Systems	CIE Marks: 50
		SEE Marks: 50
·		

UNIT-I	xx Hrs.								
Introduction to Communication Systems: Elements of Communication Systems, Modulation, Electromagnetic Spectrum and typical applications, Terminologies in com	Need for munication								
systems.									
Amplitude Modulation Techniques: Elements of analog communication, Theory of	amplitude								
modulation techniques, Generation of amplitude modulated signals.									
UNIT–II	xx Hrs.								
Angle Modulation Techniques: Theory of angle modulation techniques, Frequency r	modulation,								
Practical issues in frequency modulation, Comparison of FM and AM, Generation of frequency									
modulation: Transistor reactance modulator, Varactor diode modulator, Stabilized modulator-AFC.	reactance								
Pulse Modulation Techniques: Introduction, Pulse analog modulation techniques, Pu	ulse digital								
modulation techniques	U								
UNIT–III	xx Hrs.								
Digital Modulation Techniques: Introduction, Basic digital modulation schemes, M	-ary digital								
modulation techniques.									
Radio Transmitters and Receivers: Introduction to radio communication, Radio transm	nitters: AM								
Transmitters, SSB Transmitters, FM Transmitters, Superheterodyne receiver, S	Single and								
Independent Side Band Receivers, Slope detection, stereo FM multiplex reception									
UNIT–IV	xx Hrs.								
Broadband Communication Systems: Multiplexing, Short and medium haul systems, systems.	Long haul								
Introduction to Fiber Optic Technology: History of fiber optics, introduction to light, T fiber and fiber cables, Fiber optic components and systems.	he Optical								
Reference Books *									
 George Kennedy, Bernard Davis, S R M Prasanna, "Electronic Communication Systems", McGraw Hill Education Private Limited, New Delhi, 5th Edition B. P. Lathi, Zhi Ding, "Modern Digital and Analog Communication Systems", Oxford Press, 4th Edition, 2010 	tems", Tata d University								
3. Simon Haykin, "Digital communications", John Wiley, 2014									
Course Outcomes**									
After completion of the course student will be able to									
1. Understand and analyze communication systems and amplitude modulation tech	niques.								
2. Visualize angle and pulse modulation systems.									
3. Explain different digital communication systems and radio transmitters/receivers	•								
4. Categorize broadband and optical fiber communication systems.									

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2	0	1	1	1	0	0	0	0	0	3	0	0	
CO2	3	2	2	0	1	1	1	0	0	0	0	0	3	0	0	
CO3	3	3	1	0	1	1	1	0	0	0	0	0	3	0	0	
CO4	2	2	1	0	1	1	2	0	0	0	0	0	3	0	0	

SUBJECT CODE: 21UEC532N		Credits: 03				
L:T:P – 3-0-0	Digital Electronics and Microcontrollers	CIE Mark	ks: 50			
Total Hours/Week: 03		SEE Marks: 50				
	UNIT-I		xx Hrs.			

Combinational Logic Circuits: Definition of combinational circuit, design procedure, half adder, full adder, half subtractor, full subtractor, parallel adder, decoder, encoder, comparator (1& 2 bit), multiplexer, demultiplexer. IINIIT_II VV Hrc

Microprocessors and Microcontrollers: Introduction, comparison between microproc	essors and
microcontrollers, Z80 and 8051, 4-bit to 32-bit microcontrollers. 8051 Architectur	e: General
features of 8051 Microcontroller, 8051 block diagram, programming model, pin descri	otion, 8051
oscillator and clock, general purpose and special function registers, internal RAM and F	ROM, stack,
input/output pins, basics of input output port	

UNIT-III xx Hrs. 8051 Instructions and Programming: addressing modes, types of instructions, instruction set, and data move instructions, external data move instructions, arithmetic instructions, logical instructions, jump and call instructions, bit-addressable instructions, programs using all the above instructions and concepts.

xx Hrs. Programming peripherals in assembly: Timer and counter programming (mode 1). Serial Port Programming: Basics of serial communication, 8051 serial port programming. Interrupts: 8051 interrupts, Programming timer interrupts.

Reference Books *

1. Donald D Givone, "Digital principle and design", Tata McGraw Hill edition, 2002

UNIT-IV

- 2. Kenneth J. Ayala, "The 8051 Micro controller Architecture, Programming & Applications", Penram International, 2nd Edition, 1996
- 3. Muhammad Ali Mazidi, Janice Gillispie Mazidi, "The 8051 Micro controller and Embedded Systems", Pearsons Education, 2nd edition, 2007. John M Yarbrough, "Digital logic applications" and design", Thomson learning, 2001.
- 4. Thomas L. Floyd, "Digital fundamentals", 9th edition, PHI.
- 5. Dr.Uma Rao and Dr. Andhe Pallavi, "The 8051 microcontroller architecture, programming and applications", Pearson Education, 2010.
- 6. David Calcutt, Fredcwon, "8051 microcontroller", Elsevier, 1st Edition, 2004.

Course Outcomes**

After completion of the course student will be able to

- 1. Proficient in defining, classifying, and analyzing combinational circuits and demonstrate the ability to design and implement various basic combinational circuits effectively.
- 2. Acquire a comprehensive understanding of microprocessors and microcontrollers and capable of analyzing the architecture and general features of the 8051 microcontroller,

including its programming model, pin description, oscillator, clock, registers, and memory organization.

- 3. Develop programming skills in writing assembly programs that involve data manipulation, arithmetic operations, logical functions, jump, call instructions, and bit- addressable instructions.
- 4. Gain expertise in programming timers and counters for timekeeping and event counting, serial port communication, enabling data transmission and reception in various applications and handling interrupts for event-driven programming.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	1		1	1	1							3		
CO2	3	2	1		1	1	1							3		
CO3	3	2	2		2	2	1	2	1	1	1	2		3		
CO4	3	2	2		2	1	1	2	1	1	1	2		3		

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Outcome Based Education (OBE) and Choice Based Credit System (CBCS) SEMESTER – VII Internship

Course Code:	21UEC510I	CIE Marks	70
Teaching Hours/Week (L:T:P)		SEE Marks	30
Credits	02	Hours	30 Min/Student

I. Internship:

Students need to meet following criteria to successfully complete the internship course.

II. Course objectives:

This objective of the course are

- Enhance student's knowledge of a particular area(s) of Electronics and Communication Engineering.
- Experience integration of theory and practice existing in IT Industries.
- Develop systematic work culture and skills necessary for successful professional career.
- Build the abilities such as working in diverse areas, self learning, lifelong learning and technical documentation and reporting.

III. Components of Internship

1. Student's Diary/ Daily Log

Student's Diary and Internship Report should be submitted by the students along with attendance record and an evaluation sheet duly signed and stamped by the industry to the Institute immediately after the completion of the training. It will be evaluated based on the following criteria:

- Regularity in maintenance of the diary.
- Adequacy & quality of information recorded.
- Drawings, sketches, and data recorded.
- Thought process and recording techniques used.
- Organization of the information.

2. Internship Report

The Internship report will be evaluated based on following criteria:

- Originality.
- Internship certificate from the industry.

- Adequacy and purposeful write-up.
- Organization, format, drawings, sketches, style, language etc.
- Variety and relevance of learning experience.
- Practical applications, relationships with basic theory and concepts taught in the course

IV. Course outcomes:

After completion of the course the student will be able to:

1. Demonstrate the skills gained during the internship at the industry, through simulation/actual implementation.

- 2. Solve simple real time problems associated in their field of internship.
- 3. Exhibit abilities to use theoretical concepts in solving practical problems
- in their field of study.
- 4. Document and present technical matter to fellow colleagues effortlessly.

V. Evaluation:

The industrial training of the students will be evaluated in three stages:

- 1. Evaluation by Industry.
- 2. Evaluation through seminar presentation
- 3. Viva-voce at the Institute.

Evaluation Through Seminar Presentation/Viva-Voce at The Institute

The student has to give a seminar based on his/her training, before an expert committee constituted by the concerned department as per norms of the institute. The evaluation will be based on the following criteria:

- Quality of content presented.
- Proper planning for presentation.
- Effectiveness of presentation.
- Depth of knowledge and skills.

• Attendance record, daily diary, departmental reports shall also be analysed along with the Internship Report

Evaluation Criteria

Summary of Internship Evaluation										
Guide at the Industry										
Evaluation Criteria	Marks									
Quality of Work	10									
Ability to Learn	10									
Initiative and Creativity	10									
Character Traits	10									
Dependability	10									
Organizational Fit	10									
Response to Supervision	10									
Total (A)	70									
Department Committee(Faculty Ac	lvisor+External+HoD/Nominee)									
Demonstration of experience	10									
Report	10									
Presentation	10									
Total (B)	30									
Total Score (A+B)	Total Score (A+B) 100									

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

	Programme										РО	ΡΟ	РО			PSO
No	Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	10	11	12	PSO	PSO	3
	Course Outcomes													1	2	
The	students will be able to:															
1	Demonstrate the skills gained during	3	2	2	2	3	3	3	1	3	3	3	3	1	1	1
	the internship at the industry,															
	through simulation/actual															
	implementation.															
2	Solve simple real time problems	3	2	2	2	3	3	3	1	3	3	3	3	1	1	1
	associated in their field of internship.															
3	Exhibit abilities to use theoretical	3	2	2	2	3	3	3	1	3	3	3	3	1	1	1
	concepts in solving practical problems															
	in their field of study.															
4	Document and present technical	3	2	2	2	3	3	3	1	3	3	3	3	1	1	1
	matter to fellow colleagues															
	effortlessly.															

Evaluation of Internship – Grading Rubrics for Industry

Evaluation Dimensions	Perform	ance Rating		Maximum Score
	Needs	Meets	Excellent	
	Improvement	Expectations		
	0-4	5-7	8-10	
Internship Eva	luation Dimensions – Gradi	ing Criteria		
	Work was done in a	With a few minor	Thoroughly and	10
	careless manner	exceptions,	accurately	
	and was of erratic	adequately performed	performed all work	
Quality	quality;	most work	requirements;	
of Work	Work assignments	requirements; Most	Submitted all work	
	were usually late	work assignments	assignments on time;	
	and required	submitted in a timely	Made few if any	
	review;	manner; Made	errors	
	Made numerous errors	occasional errors		
	Asked few questions	Asked relevant	Consistently	10
	and rarely sought out	questions and	asked relevant	
	additional information	sought out	questions and	
	Unable or slow to	additional	sought out	
	understand new	information from	additional	
Ability to	concepts, ideas, and	appropriate	information from	
Learn	work assignments;	sources;	appropriate	
	Unable or unwilling to	Acceptable	sources;	
	recognize mistakes	understanding of	Quickly understood	
	and was not receptive	new concepts, ideas,	new concepts,	
	to making needed	and work	ideas, and work	
	changes and	assignments;	assignments;	
	improvements	Willing to take	Always willing to	
		responsibility for	take	
		mistakes and to	responsibility for	
		make needed	mistakes and to	
		changes and	make needed	
		improvements	changes and	
			improvements	
	Had little observable	Worked without	A self-starter;	10
----------------	---------------------------	--------------------------	------------------------	----
	drive and required	extensive supervision;	Consistently sought	
	close supervision;	Found problems to solve	new challenges and	
Initiative and	Showed little interest in	and sometimes asked for	asked for additional	
Creativity	meeting standards;	additional work	work assignments;	
	Did not seek out	assignments;	Regularly	
	additional work and	Set his/her own goals	approached and	
	frequently	and, tried to exceed	solved problems	
	procrastinated in	requirements;	independently;	
	completing	offered some	Frequently	
	assignments;	creative ideas	proposed	
	suggested no new		innovative and	
	ideas or options		creative ideas,	
			solutions, and/or	
			options	
	Regularly exhibited a	Except in a few minor	Exceptionally positive	10
	negative attitude;	instances,	attitude;	
	Dishonest and/or	demonstrated a	Consistently	
	showed a lack of	positive attitude;	exhibited honesty	
	integrity on several	Regularly exhibited	and integrity in the	
Character	occasions;	honesty and integrity in	workplace;	
Traits	Unable to recognize	the workplace;	Keenly aware of	
	and/or was insensitive	Usually aware of and	and deeply	
	to ethical and	sensitive to ethical and	sensitive to	
	diversity issues;	diversity issues on the	ethical and	
	Displayed	job;	diversity issues	
	significant lapses	Normally behaved in	on the job;	
	in ethical and	an ethical and	Always behaved in	
	professional	professional manner	an ethical and	
	behavior		professional	
			manner	

Evaluation Dimensions	Performance Rating						
	Needs Improvement	Meets Expectations	Excellent				
	0-4	5-7	8-10	-			
Internship Eval	uation Dimensions – Grad	ding Criteria					
Dependability	Generally unreliable in completing work assignments; Did not follow instructions and procedures promptly or accurately; Careless, and work needed constant follow-up; required close supervision	Generally reliable in completing tasks; Normally followed instructions and procedures; Usually attentive to detail, but work had to be reviewed occasionally; Functioned with only moderate	Consistently reliable in completing work assignments; Always followed instructions and procedures well; Careful and extremely attentive to detail; Required little or minimum supervision	10			

	Unwilling or unable to	Adequately	Completely understood	10
	understand and	understood and	and fully supported the	
	support the	supported the	organization"s mission,	
	organization's	organization"s	vision, and goals;	
Organizational	mission, vision,	mission, vision, and	Readily and	
Fit	and goals;	goals;	successfully	
	Exhibited difficulty in	Satisfactorily	adapted to	
	adapting to	adapted to	organizational	
	organizational norms,	organizational	norms,	
	expectations, and	norms,	expectations, and	
	culture;	expectations,	culture;	
	Frequently	and culture;	Consistently	
	seemed to	Generally functioned	functioned within	
	disregard	within appropriate	appropriate	
	appropriate	authority and	authority and	
	authority and	decision-	decision- making	
	decision-	making	channels	
	making channels	channels		
	Rarely sought	Sought supervision	Actively sought	10
	supervision when	when necessary;	supervision when	
	necessary;	Receptive to	necessary;	
	Unwilling to accept	constructive criticism	Always receptive to	
Response to	constructive criticism	and advice;	constructive criticism	
Supervision	and advice;	Implemented	and advice;	
	Seldom	supervisor	Successfully	
	implemented	suggestions in most	implemented	
	supervisor	cases;	supervisor suggestions	
	suggestions;	Willing to explore	when offered;	
	Unwilling to explore	personal	Always willing to	
	personal strengths	strengths and	explore personal	
	and areas for	areas for	strengths and areas	
	improvement	improvement	for improvement	

Evalua	Evaluation of Internship – Grading Rubric for Department Evaluation									
Committee/Faculty										
Evaluation	Perfo	rmance Rating		Maximum						
Dimensions				Score						
	Needs	Meets	Excellent	50						
	Improvement	Expectations								
	0-4	5-7	8-10							
Internship Eva	luation Dimensions – (Grading Criteria								
Demonstrati	Offers little in the	Addresses the	Well addressed	10						
on of	way of illustrating	Activities and	activities and							
experience	experiences	experiences,	experiences as well as							
	Failsto adequately	but not so	relating them to the							
	address how the	clearly and	program competencies.							
	experiences relate	concisely								
	to the									
	competencies.									

Report	Unedited and difficult to read It is littered with grammatical and typographical errors, demonstrating little effort to producing a quality report. No reference is made to practical application. Lacks evidence and internship experience	Well-w most p somew errors been additio to subr Key con the self and int experie inaccur incomp Some h applica include	vritten for the part but still has vhat detracting that could have fixed with onal editing prior mission. ncepts related to ected evidence ternship ence are rate or olete. helpful practical ations are ed.	Has been carefully edited and is free or nearly free of any grammatical or typographical errors. Well-organized report is easy to read and understand and stands alone as a quality piece of writing. An accurate and complete reflection of key concepts related to the selected evidence and internship experience Practical applications are included to illuminate issues.	10
Presentati on	Information is lacking/unclear communicated in such that the audience ca understand the purpo the evidence work internship experiences.	and a way annot se of and	Information is presented in a clear manner but still lacks prac tical	Information is communicated in a thorough manner and ideas are expressed in such a way that the audience can clearly understand the evidence work and internship experiences.	10
			experience		

SUBJECT CODE: 21UBT523C	Environmental Studies	Credits: 01		
L:T:P – 1-0-0		CIE Marks: 50		
Total Hours/Week: 01		SEE Marks: 50		
	LINIT	04 Hrs		

UNIT-I	04 Hrs.
Natural Resources: Human activities and their impacts. Energy: Solar energy, Wir	nd energy,
Hydropower, Tidal energy, Ocean thermal energy, Geo thermal energy, Biomass energy	gy, Biogas,
Biodiesel, Bioethanol, Hydrogen as fuel. Non renewable Energy: Coal, Petroleum, N	atural gas,
Nuclear energy.	
UNIT–II	04 Hrs.
Environmental Pollution: Water pollution, water quality standards, water borne disease	s, Fluoride
problem, Air pollution, Noise pollution. Effect of electromagnetic waves.	
Sustainable future: Concept of sustainable development, threats to sustainability, stra	ategies for
sustainable development. Environment economics – concept of green building, clean de mechanism (CDM).	velopment
UNIT–III	03 Hrs.
Current Environmental Issues of concern: 03 hours Greenhouse Effect- Greenhouse	gases and
Global Warming, Climate change, ozone layer depletion, Acid rain, Eutrophication, Envi	ronmental
policy legislation rules & regulations	
UNIT–IV	04 Hrs
Fundamentals of Waste management: 04 hours Solid waste management:	Sources,
classification, characteristics, collection & transportation, disposal, and processing	methods.
Hazardous waste management and handling. Concept of waste water treatment, Biore	mediation,
Industrial waste management (Case studies: Cement, plastic, chemical, E-waste	e, food &
construction industry waste management).	
Reference Books *	
1. Benny Joseph "Environmental Studies" Tata McGraw Hill, 2005	
2. Dr. D. L. Manjunath, "Environmental Studies" Pearson Education, 2006	
3. Koushik and Koushik "Environmental Science & Engineering" New Age International P	ublishers,
New Delhi, 2006	
4. Meenakshi "Environmental Science & Engineering" Pranticce Hall of India, 2006	
Course Outcomes**	
After completion of the course student will be able to	
1. Ability to recognize natural resources and its uses.	
2. Able to understand pollution and its effects on environment and to implement s	ustainable
future in the work place.	
3. Ability to understand current environmental issues.	
4. Able to apply the waste management techniques in various fields	

Course Outcomes	Programme Outcomes (POs)										Prog Outc	ram Spo omes (F	ecific PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	-	-	-	2	3	-	-	-	-	3	1	-	-
CO2	2	-	-	-	-	-	3	-	-	-	-	3	1	-	-
CO3	-	2	-	-	-	2	2	-	-	-	-	3	1	-	-
CO4	-	-	-	1	-	2	2	1	-		-	3	1	-	1

SUBJECT CODE:		Credit: 02
21UHS521C	Quantitative Aptitude and Professional	
L:T:P - 2 : 0: 0	Skills	CIE Marks: 50
Total Hours/Week:02		SEE Marks: 50

Course Objectives:

- 1. To develop and augment written English language vocabulary and comprehension skills
- 2. To augment the ability to understand and analyse a problem and find its solution through analysis of data given
- 3. To fine-tune the quantitative analysis and problem-solving skills

UNIT-I	08 Hrs.							
Vocabulary Development: Vocabulary Building Techniques, Root Words, Antonyms & Synonyms,								
Sentence Completion, Error Detection & Correction, Reading Comprehension								
UNIT–II	08 Hrs.							
Numbers, Proportion & Finance: Number System, Factors & Multiples, The God of Math	n – Linear							
Equations, Ratio-Proportion-Variation, Percentages, Profit & Loss, Interest, Averages & A	lligations							
UNIT–III	07 Hrs.							
Time & Probability: Time & Work, Time Speed, & Distance, Permutations & Combination	ns, Probability							
UNIT–IV	07 Hrs.							
Verbal, Analytical, and Visual Reasoning: Human Relations, Direction Tests, Coding Deco and Calendars, Visual Reasoning, Analytical Puzzles, Mathematical, Arrangement & Class Puzzles	oding, Clocks ification							
Reference Books								
 R. S. Aggarwal, "A Modern Approach to Verbal and Non – Verbal Reasoning", Sultan O Sons, New Delhi, 2018 R. S. Aggarwal, "Quantitative Aptitude", Sultan Chand and Sons, New Delhi, 2018 Chopra, "Verbal and Non – Verbal Reasoning", MacMillan India M Tyra, "Magical Book on Quicker Maths", BSC Publications, 2018 George J Summers, "The Great Book of Puzzles & Teasers", Jaico Publishing House, 19 Shakuntala Devi, "Puzzles to Puzzle You", Orient Paper Backs, New Delhi, 1976 R. S. Aggarwal, "A Modern Approach to Logical Reasoning", Sultan Chand and Sons, N 2018 Cambridge Advanced Learner's Dictionary, Cambridge University Press. Kaplan's GRE 	Chand and 989 Jew Delhi, guide							
Course Outcomes								

After active participation in this course, the student will have

- CO1: Enhanced his/her vocabulary and learnt techniques to augment it further
- **CO2:** Learned the techniques to augment his/her verbal ability
- **CO3:** Understood step-by-analysis of the given problem and learnt to develop a method for solving it
- **CO4**: Enhanced and augmented his/her ability to work with quantitative problems

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1							2	3		1		
CO2		1							2	3				
CO3		2	2	3								1		
CO4		1		2							2	1		

SUBJECT CODE:		Credits: 03								
	Information Theory and Coding	CIEMarks:50								
Total Hours/Week: 03		SEEMarks:50								
	UNIT-I	10 Hrs.								
Information theory: Introd	uction, measure of information, average information	ation content of symbols								
in long independent sequ	uences, average information content of symbols	ols in long dependent								
sequences, Markov statist	tical model for information source, entropy a	nd information rate of								
Markov source.	- Channen's speeding algorithm. Channen Fa	a anadina alaavithaa								
Huffman Coding	s, shannon's encoding algorithm, shannon-rai	no encoding algorithm,								
	UNIT-II	10 Hrs.								
Communication channels	Discrete communication channels, entropy fund	ctions and equivocation,								
mutual information, prop	erties of mutual information, rate of informat	ion transmission over a								
discrete channel, capacity	y of a discrete memory less channel, Shannor	's theorem on channel								
capacity, channel efficier	ncy and redundancy, symmetric/uniform chai	nnel, binary symmetric								
channel, binary erasure ch	nannel. Shannon-Hartley law and its implications	•								
	UNIT-III	10 Hrs.								
Error control coding: Intro	oduction, types of errors, examples of error con	rol coding, methods for								
controlling errors, types o	t codes. Linear Block Codes: Matrix description	of LBC, encoding circuit								
woight Hamming distance	s, syndrome and error correction, syndrome calc	and correction canability								
of LBCs, standard array.		ind correction capability								
	UNIT-IV	10 Hrs.								
Binary Cyclic Codes: Algeb	raic structure of cyclic codes, encoding using (n,	k) bit shift register,								
syndrome calculation, erro	r detection and correction.									
Convolution codes: Conne	ection pictorial representation, time and trans	orm domain approach,								
systematic convolution co	des, Structural properties of convolution code	es: State diagram, code								
tree, trellis diagram.										
1. P.S. Satyanarayana,200	4, Concepts of information theory and coding (2	nd edition)Dynaram.								
2. Bernard Sklar,2002, Dig	ital communication fundamentals and application	ons (2 nd edition) Pearson								
education.	06 Digital and analog communication systems	John Wilow								
A Simon Havkin 2003 Did	sital communication John Wiley	John whey.								
4. Simon naykin,2005, Dig										
Course Outcomes**										
After completion of the co	urse student will be able to	ooding ood								
1. Demonstrate the basic	1. Demonstrate the basic information theory concepts, entropy, need of coding and working of									
2. University channel canacity	e county lectiniques.	nunication channels and								
describe entrony functi	ons, equivocation, mutual information of comm	unication channel								
4. Design an encoder, dec	oder, and error correction circuit for linear block	< code.								

5. Design an encoder, decoder and error correction circuit for cyclic code and demonstrate encoding of convolutional codes, also verify its structural properties using code tree and trellis diagram.

*Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pr	Program Specific Outcomes (PSOs)										
	1 2 3 4 5 6 7 8 9 10 11 12													2	3
CO1	3	2	1	0	1	1	1	0	0	0	0	0	3	0	0
CO2	3	2	1	0	0	1	0	0	0	0	0	0	3	0	0
CO3	3	3	2	0	1	1	1	0	0	0	0	0	3	0	0
CO4	3	3	2	0	1	1	1	0	0	0	0	0	3	0	0

SUBJECT CODE: 21UEC602C		Credits: 03
L:T:P - 2 : 2 : 0	Electromagnetic Theory	CIE Marks: 50
Total Hours/Week: 04		SEE Marks: 50

UNIT-I	10 Hrs.
Coulomb's Law and electric field intensity: Introduction to coulomb's law, field intensi	ty,field due to
continuous volume charge distribution, Field of a line charge & field of sheet charge, Elect	ric flux density
Gauss law and divergence: Electric flux density, Gauss law, Application of Gauss law for	or symmetrical
charge distribution (point charge, Coaxial cable) and differential volume element, Diverge	nce, Maxwell's
first equation, vector operator delland divergence theorem.	
UNIT–II	10 Hrs.
Energy and potential: Energy expended in moving a point charge in an electric field, th	e line integral,
definition of potential difference and potential, the potential field of a point charge, po	tential field of
system of charges, potential gradient, Energy density in an Electrostatic Field.	
Conductors, dielectrics and capacitance: Current and current density, continuity of current	ent, conductor
properties and boundary conditions, boundary conditions for perfect dielectrics, ca	pacitance and
examples (Parallel plate capacitor, Dielectric boundary normal to plates).	
UNIT–III	10 Hrs.
Poisson's and Laplace's equations: Poisson's and Laplace's equations. Uniqueness theo	orem, examples
of the solution of Lapalce and poisson's equations.	
The steddy Magnetic Field:Biot-savart's law, Ampere's Circuital Law, curl, stokes theo	rem, magnetic
flux density, scalar and vector magnetic potentials.	
UNIT–IV	10 Hrs.
Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Max	well's equation
in point and integral form, retarded potentials.	
Uniform Plane Wave: Wave Propagation In free space an Dielectrics, Poynting's Theo	orem and wave
power, Plane wave in boundaries and in dispersive media: Reflection Uniform Plane V	Vave At normal
incidence, SWR.	
Reference Books *	
1. WilliamHHaytJr,JohnABuck, "EngineeringElectronics", TataMcGraw-Hill, 7 th edition, 200	06
2. JohnKraussandDanielAFleisch, "Electromangeticswithapplication", McGraw-Hill, 5 th ed	dition, 1999
3. DavidKCheng, "FiledandwaveElectromangetics" PearsoneducationAsia, 2 nd edition, -198	9, Indian
Reprint-2001.	
Course Outcomes**	
After completion of the course student will be able to	
1 Understand the concent of scalar vectors Coulombs law Electric filed intensity Ga	uss law and its
applications divergence and analyze the problems based on the mentioned laws	
2 Understand potential due to charges potential gradient continuity equation bound	ary conditions
and capacitance and Analyze the problems based on the mentioned laws	
3. Understand Poisson's, Laplaces equation and its application. Uniqueness theorem, Bio	ot-savart's law.
ampere's law, stokes theorem and Curl with respect to magnetic fields and analyze	the problems
related to the mentioned laws	
4. Understand about time varying fields. Maxwell's equation, retarded potential, wave	propagation in
free space, Poynting's theorem, uniform plane waves, Polarization of plane waves, S	Standing Wave

Ratio (SWR) and analyze the problems based on the mentioned laws.

Course Outcomes				Prog	ram	me	Outc	ome	s (PC	s)			Program Specific Outcomes (PSOs)					
	1	2	3	4	12	1	2	3										
CO1	3	3	3	2	2	2	2	1	0	0	0	0	3	0	0			
CO2	3	2	3	2	1	2	2	1	0	0	0	0	3	0	0			
CO3	3	2	3	2	2	2	2	1	0	0	0	0	3	0	0			
CO4	3	3	3	З	3	3	З	1	0	0	0	0	3	0	0			

SUBJECT CODE: 21UEC603C		Credits: 03
L:T:P - 3 : 0 : 0	Computer Networks	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.									
Layered Tasks,OSIModel,LayersinOSImodel,TCP/IPSuite,Addressing,DataLinkControl: Flow and error control, Protocols, Noiseless channels and noisy channels, HDLC, PPP.	Framing,									
UNIT–II	10 Hrs.									
MultipleAccesses:Randomaccess,Controlledaccess,Channelization,WiredLAN,Ethernet,IEEE standards,StandardEthernet.Changesinthestandards,FastEthernet,GigabitEthernet,Connecting LANs,BackboneandVirtualLANs										
UNIT–III	10 Hrs.									
NetworkLayer,Logicaladdressing,Ipv4addresses,Ipv6addresses,Ipv4andIpv6Transitionfro Ipv6, Delivery, Forwarding, Unicast Routing Protocols, Multicast Routing protocols.	om lpv4 to									
UNIT–IV	10 Hrs.									
Transport layer Process to process Delivery, UDP, TCP, Application Layer: Domain name system, NameSpace, DomainNameSpace, Distribution of NameSpace, DNS in the Internet, Resolution, DNS messages, Types of Records, Registrars, Dynamic Domain Name System, Encapsulation. Reference Books *										
 Data Communication and Networking, "BehrouzA.Forouzan", 4thEdition, TMH, India 2.AndrewS.Tanenbaum, "Computer Networks", Prentice-Hall, 2010. William Stallings, "DataandComputerCommunications", Prentice-Hall, 2007. 	a,2006.									
Course Outcomes**										
 After completion of the course student will be able to 1. Master the terminology and concepts of the OSI reference model and the TCP/IP model 2. Master the concepts of protocols, network interfaces, and design/performance issu area networks and wide area networks 3. Identify, compare and contrast different techniques and design issues of core function as addressing, routing, internetworking, switching, multiplexing, error and flow medium access and coding. 4. Become familiar with Widely-used Internet protocols lichas TCP/IP UDP etc. 	reference les in local tions such w control,									

Course Outcomes				Pro	gram	nme (Dutc	ome	s (PC	Os)			Program Specific Outcomes (PSOs)					
	1	1 2 3 4 5 6 7 8 9 10 11 12 1													3			
CO1	3	2	3	2	1	1	1	0	0	0	0	0	1	0	3			
CO2	3	3	2	2	1	1	1	1	0	0	0	0	1	0	3			
CO3	3	2	3	2	1	1	1	0	1	1	1	0	1	0	3			
CO4	3	3	3	2	1	1	2	1	1	1	1	1	1	0	3			

SUBJECT CODE: 21UEC604L	Commuter Naturalia Laboratori	Credits: 01
L:T:P - 0 : 0 : 2	Computer Networks Laboratory	CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50

SI.N	LISTOF EXPERIMENTS
0.	
1.	Study of different types of network cables and practically implement the cross-
	wired cable and straight through cable using clamping tool
2.	Study of network components/devices:i)NICii)Hubiii)Switch
3.	Connecting computers on Local Area Network(LAN)
4.	Study of packet tracer
5.	Configuration of different network topologies using packet tracer
6.	Configuration of switch and establishing LAN using packet tracer
7.	Creation of Virtual LAN(VLAN)using packet tracer
8.	Configuration Of Basic Routing Using Packet Tracer
9.	Configuration of a network using Routing Information Protocol(RIP) using packet
	tracer
10.	Configuration of a network using Open Shortest path First(OSPF) using packet tracer
11.	Configuration of DHCP using packet tracer
12.	Configuration of NAT using CISCO packet tracer
Course Outco	omes**
After comple	tion of the course student will be able to
1.	To Apply the concepts of Data Communication and Networking
2.	To do Internetworking & devices
3.	To Develop New Routing techniques
4.	Practically Know The Functionality of devices using RIP, OSPF, DHCP, and NAT

Course Outcomes				Progi	amr	ne C	Dutc	ome	s (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	2	3	2	1	1	1	0	0	0	0	0	1	0	3	
CO2	3	3	2	2	1	1	1	1	0	0	0	0	1	0	3	
CO3	3	2	3	2	1	1	1	0	1	1	1	0	1	0	3	
CO4	3	3	3	2	1	1	2	1	1	1	1	1	1	0	3	

SUBJECT (CODE:		Credits: 01									
L:T:P - 0 : 0	0:2	Advanced Communication Laboratory	CIE Marks: 50									
Total Hou	rs/Week: 02		SEE Marks: 50									
	•											
SI.No.	SI.No. LIST OF EXPERIMENTS											
1.	1. Verification Of The Sampling Theorem											
2.	Generation an	d detection of ASK signal										
3.	Generation an	d detection of FSK signal										
4.	Generation an	d detection of PSK signal										
5.	Study of radia	tion pattern of DIPOLE antenna										
6.	Study of radia	tion pattern of HORN antenna										
7.	Study of radia	tion pattern of YAGI-UDA antenna										
8.	8. Measurement of frequency and wavelength of a microwave source											
9.	9. Study the mode characteristics of Reflex klystron											
10.	Measurement	of coupling factor, insertion loss and direction	vity of a Directional									
	Coupler											
11.	Study of Magi	c Tee and its characteristics										
12.	Study of V-I ch	aracteristics of Gunn diode and Gunn diode	as an oscillator									
13.	To Study the c	haracteristics of low pass and high pass mic	rostrip filter									
14.	To Study the c	haracteristics of band pass and band stop m	icrostrip filters									
15.	To study the c	haracteristics of ring resonator in microstrip										
16.	To study and p	olot the radiation pattern of microstrip patch	n antenna									
Course Outc	omes**											
After comple	etion of the cou	rse student will be able to										
1.Desi	1.Design and test the digital modulation techniques and analyze the waveforms											
2.Dete	2.Determine The Radiation Pattern Of Different Antennas											
3.Dete	ermine the chara	acteristics and response of microwave device	es									
4.Dete	ermine the chara	acteristics of micro strip antennas and device	es and compute the									
para	meters associat	ed with it										

Course Outcomes	Pro	gram	ime (Program Specific Outcomes (PSOs)											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	3	1	2	0	0	1	2	2	1	0	3	0	0
CO2															
	2	2	3	1	2	0	0	1	2	2	1	0	3	0	0
CO3															
	2	2	3	1	2	0	0	1	2	2	1	0	3	0	0
CO4	2	2	3	1	2	0	0	1	2	2	1	0	3	0	0

SUBJECT CODE:		Credits: 03
L:T:P - 3 : 0 : 0	Biomedical Signal Processing	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hrs.
Introduction to Biomedica	I Signal: The nature of biomedical signals, object	ives of biomedical signal
analysis, difficulties encour	ntered in biomedical signal analysis, Computer ai	ded diagnosis.
Neurological Signal proces	sing: Brain and its potentials, Electrophysiologic	al origin ofBrain waves,
EEG signal and its char	acteristics, EEG analysis, Linear prediction	theory, Autoregressive
(AR)method, Recursive i	estimation of AR parameters, spectral em	or measure, Adaptive
segmentation.	UNIT-II	10 Hrs.
Filtering for Removal of A	rtifacts: Random noise, structured noise and ph	vsiological interference.
stationary versus non-st	ationary processes, typical case study, Tim	e domain filters with
application: Synchronized	averaging, moving-average filters. Frequence	cy domain filters with
examples: removal of hi	gh frequency noise by Butterworth low pass	filters, removal of low
frequency noise by Butter	worth high pass filter, removal of periodic artif	acts by notch and comb
filters. Optimal filtering: V	Veiner filter.	
	UNIT–III	10 Hrs.
Signal Averaging: Basics	of signal averaging, Signal averaging as a digital	filter, A typical average,
Software for signal average	ring, Limitations of signal averaging.	
	icationofsieepstages, i neiviarkovmodelandiviarko	ovchains, DynamicsofSie
ep-wakerransitions, Hypn		
CardiologicalSignalFroces		10 Hrs
Adaptive Interference/N	Dise Cancellation: A review of wiener filtering r	vrohlem Principle Of an
adaptive filter, the steep	est descent algorithm. Adaptive noise cancelle	er. Cancellation of 60Hz
Interference in ECG, Canc	eling Donor heart Interference in Heart-transpla	ant ECG, Cancellation of
Electrocardiographic sign	als from the electrical activity of chest muscles	, Canceling of maternal
ECG in Fetal ECG, Cancella	ation of higher frequency noise in electro- surger	гу.
ECG Data Reduction To	echniques: Direct data compression techniq	jues, Direct ECG data
compression techniques,	Transformation compression techniques, Ot	ther data compression
techniques, Data compres	sion techniques comparison.	
Reference Books *		
1. Rangaraj M	Rangayyan, "Biomedical signal analysis- A case-	study approach",
Wiley 2009.		
2. D. C. Reddy,	, "Biomedical Signal Processing- Principles and T	echniques", Tata
	US. Nine "Piomodical Digital Cignal Processing" D.U. 20	006
	medicalSignalProcessing" Academic Press 1004	
4. AKayivi, DIU		

Course Outcomes**

After completion of the course student will be able to

1. Analyze the nature of Biomedical signals and related concepts.

2.Apply filters to remove noise from biomedical signals.

3.Apply averaging technique on biomedical signals and extract the features of EEG and ECG signals. Also analyze event detection techniques for EEG and ECG signals.

4. Applydifferentfiltersfornoisecancellationandsignalcompressiontechniqueson biomedical signals.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	gran	nme	Outo	ome	s (PC	Ds)			Program Specific Outcomes (PSOs)					
	1	2	3	4	1	2	3											
CO1	3	3	3	3	3	3	2	1	1	1	1	2	3	0	0			
CO2	3	3	3	3	3	3	1	0	0	0	0	2	3	0	0			
CO3	3	3	3	3	3	3	0	0	0	0	0	2	3	0	0			
CO4	3	3	3	3	3	3	0	0	0	0	0	2	3	0	0			

SUBJECT CODE: 21UEC607E	Computer Organization	Credits: 03
L:T:P - 3 : 0 : 0	computer organization	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hrs.
Basic Structure of Comput Structures, Performance– Measurement, Historical F Machine Instructions and Location and Addresses, M Modes, Assembly Languag Additional Instructions. En	ters: Computer Types, Functional Units, Basic Op Processor Clock, Basic Performance Equation, C Perspective. I Programs: Numbers, Arithmetic Operations a Memory Operations, Instructions and Instruction ge, Basic Input and Output Operations, Stacks ar Acoding of Machine Instructions.	Perational Concepts, Bus Clock Rate, Performance nd Characters, Memory Sequencing. Addressing nd Queues, Subroutines,
	UNIT-II	10 Hrs.
Input/Output Organization Direct Memory Access, But Handling Interface Circuits	n: Handling Multiple Devices, Controlling Devices, Interrupts – Interrupt Hardware, Enabling a 5, Standard I/O Interfaces–PCI Bus and USB.	e Requests, Exceptions, and Disabling Interrupts,
	UNIT–III	10 Hrs.
Size and Cost, Cache M Considerations, Virtual M Signed Numbers, Design o	emories–Mapping Functions, Replacement Al emories, Secondary Storage. Arithmetic: Addit f Fast Adders, Multiplication of Positive Number	gorithms, Performance tion And Subtraction of
Arithmatic Cant - Cignad	UNIT-IV	10 Hrs.
point Numbers and Opera Basic Processing Unit: Fur Organization, Hard-wired	tions. ndamental Concepts, Execution of a Complete In Control and Microprogrammed Control.	nstruction, Multiple Bus
Reference Books *		
 Carl Hamacher, Zvonko Hill, 5th Edition, 2002 David A. Patterson, Joh /Software Interface ARI WilliamStallings, "Comp 	oVranesic, SafwatZaky, "Computer Organization n L. Hennessy, "Computer Organization and Des M Edition", Elsevier, 4 th Edition, 2009 uterOrganization&Architecture",PHI,7thEdition,	י", Tata McGraw sign – The Hardware 2006
Course Outcomes**		
 After completion of the co Have thorough knowled Analyze the different w compute including using Analyze memory hiera secondary memory con Implement arithmetic instruction execution of 	urse student will be able to dge about structure and performance of a mode rays of communicating with I/O devices and star g interrupt. archy including main memory, cache memory sidering cost/performance. Different Mapping F operations like multiplication, division and a f a complete instruction in the processing unit and	rn digital computer. ndard I/O interfaces in a y, virtual memory and functions of cache. analyze the process of nd its control.

Course Outcomes		Programme Outcomes (POs) Program Spec Outcomes (PS								cific SOs)					
	1	2	3	4	1	2	3								
CO1	1	1	2	1	2	0	0	0	0	0	0	0	0	0	2
CO2	1	1	2	1	3	0	0	0	0	0	0	0	0	0	3
CO3	1	1	2	1	2	0	0	0	0	0	0	0	0	0	2
CO4	1	1	3	1	3	0	0	0	0	0	0	0	0	0	3

SUBJECT CODE: 21UEC608E	Digital Image Processing (Department Elective)	Credits: 03
L:T:P - 3: 0: 0		CIEMarks:50
Total Hours/Week: 03		SEEMarks:50

Course Objectives:

- 1. To provide the basic knowledge on image processing concepts.
- 2. To develop the ability to apprehend and implement various image processing algorithms.
- 3. To understand various image processing steps and their applications in real time
- 4. To facilitate the students to comprehend the contextual need pertaining to various image processing applications.

UNIT-I

UNIT-II

10 Hrs.

10 Hrs.

10 Hrs.

Introduction- Digital Image, its Representation & point operations: Image Representation and Image Processing Paradigm - Elements of digital image processing, Image model. Sampling and quantization-Relationships between pixels- Connectivity, Distance Measures between pixels, Color image (overview, various color models)-Various image formats bmp, jpeg, tiff, png, gif, etc. Noise in Images Sources, types. Arithmetic operations, Logical operations, Spatial operations Single pixel, neighbour hood, geometric-Contrast Stretching-Intensity slicing-Bit plane slicing Power Law transforms.

Image Enhancement: Spatial and Frequency domain-Histogram processing-Spatial filtering-Smoothening spatial filters, Sharpening spatial filters; Frequency filtering-Smoothening frequency filters-Sharpening frequency filters, Selective filtering.

Image Restoration: Noise models - Degradation models-Methods to estimate the degradation-Image deblurring Restoration in the presence of noise only spatial filtering-Periodic noise reduction by frequency domain filtering-Inverse filtering-Wiener Filtering.

UNIT-III10 Hrs.Feature Extraction: Region of interest (ROI) selection - Feature extraction: Histogram based features- Intensity features-Color, Shape features-Contour extraction and representation-Homogenousregion extraction and representation-Texture descriptors.Image Segmentation: Discontinuity detection-Edge linking and boundary detection. Thresholding-Region oriented segmentation- Histogram based segmentation. Object recognition based on shape

Region oriented segmentation- Histogram based segmentation. Object recognition based on shape descriptors.

UNIT-IV

Image Coding and Compression: Lossless compression versus lossy compression-Measures of the

compression efficiency- Huffmann coding, Bit plane coding, Arithmetic coding. Wavelet Transform in image processing: Wavelet Transform in one dimensions, Wavelet transforms in two dimensions. Fast Wavelet Transform , Other Applications of Wavelet in image processing.

Reference Books *

Author/s last Name, initial (Year), Book Title (edition), Publisher

1. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, 4th Edition, Pearson, 2018. 2. William

2. K. Pratt, Digital Image Processing, 4th Edition, John Wiley, 2007.

3. Fundamentals of Digital Image Processing, Jain A.K., PHI, 1997

4. Insight into wavelets - From theory to practice, K. P. Soman and K. I. Ramchandran, PHI ,2005, Second Edition.

5. Rafael C. Gonzalez, "Digital Image processing using MATLAB", Richard E. Woods and Steven Low price Edition, Pearson Education Asia, India, 2nd Edition, 2004.

Course Outcomes**

After completion of the course student will be able to

1. Ascertain and describe the basics of image processing concepts through mathematical interpretation and operations.

2. Acquire the knowledge of various image enhancement techniques involved.

3. Demonstrate image restoration process and its respective filters required.

4. Experiment the various image segmentation and feature extraction operations.

5. Design the various image coding and compression procedures and illustrate the wavelet transform in images with its applications.

*Books to be listed as per the format with decreasing level of coverage of syllabus Course Articulation Matrix

Course Outcomes				Pro		Program Specific									
					Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3
CO1	3	3	3	2	2	1	0	1	1	1	0	1	3	0	0
CO2	3	3	3	2	2	1	0	1	1	1	0	1	3	0	0
CO3	3	3	3	2	2	1	0	1	1	1	0	1	3	0	0
CO4	3	3	3	2	2	1	0	1	1	1	0	1	3	0	0
CO5	3	3	3	2	2	1	0	1	1	1	0	1	3	0	0

Assignment:

Students are required to develop programs using Matlab. List of Programs

- 1. Write program to read and display digital image using MATLAB or SCILAB
 - a. Become familiar with SCILAB/MATLAB Basic commands
 - b. Read and display image in SCILAB/MATLAB
 - c. Resize given image
 - d. Convert given colour image into gray-scale image
 - e. Convert given colour/gray-scale image into black & white image
 - f. Draw image profile
 - g. Separate colour image in three R G & B planes
 - h. Create colour image using R, G and B three separate planes
 - i. Write given 2-D data in image file
- 2. To write and execute image processing programs using point processing method
 - a. Obtain Negative image
 - b. Obtain Flip image
 - c. Thresholding
 - d. Contrast stretching
- 3. To write and execute programs for image arithmetic operations
 - a. Addition of two images
 - b. Subtract one image from other image
 - c. Calculate mean value of image
 - d. Different Brightness by changing mean value

- 4. To write and execute programs for image logical operations
 - a. AND operation between two images
 - b. OR operation between two images
 - c. Calculate intersection of two images
 - d. Water Marking using EX-OR operation
 - e. NOT operation (Negative image)
- 5. To write a program for histogram calculation and equalization using
 - a. Standard MATLAB function
 - b. Program without using standard MATLAB functions
- 6. To write and execute program for geometric transformation of image
 - a. Translation b. Scaling c. Rotation d. Shrinking e. Zooming
- To understand various image noise models and to write programs for

 a. image restoration b. Remove Salt and Pepper Noise c. Minimize Gaussian noise d. Median filter and Weiner filter

8. Write a program in MATLAB/SCILAB for edge detection using different edge detection mask 9. To write and execute program for wavelet transform on given image and perform inverse wavelet transform to reconstruct image.

SUBJECT CODE: 21UEC609E	Emboddod System	Credits: 03
L:T:P - 3 : 0 : 0	Linbedded System	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

-

UNIT-I	10 Hrs.
Introduction to embedded systems, embedded system vs. general computing	g system,
classifications, purpose of embedded system, major application areas including so	me novel
applications. The typical embedded system: Core of embedded system, memory, se	nsors and
actuators, communication interface, Characteristics and quality attributes of embedded	systems.
UNIT–II	10 Hrs.
ARM-32 bit Microcontroller: Thumb-2 technology and applications of ARM, architectur	e of ARM
Cortex M3, various units in the architecture, debugging support, general purpose registe	rs, special
registers, exceptions, interrupts, stack operation, reset sequence.	
UNIT–III	10 Hrs.
Hardware software co-design and program modeling: fundamental issues in hardware	software
co-design, computational models in embedded system, hardware software trade-offs. E	mbedded
firmware design and development: design approaches, Mixing assembly and high level	language,
Programming in embedded C.	
UNIT–IV	10 Hrs.
Real-time operating system based embedded system: operating system basics, need	for RTOS,
types of operating system, tasks, process and threads, multiprocessing and multitas	king, task
scheduling, threads, processes and scheduling : putting altogether, task communica	tion, task
synchronization, device drivers.	
Reference Books *	
1. Shibu K V, "Introduction to embedded systems", Tata McGraw Hill private limited, 201	0.
2. Joseph Yiu, "The definitive guide to the ARM CORTEX-M3", Newnes, Second edition.	
3. Rajkamal, "Embedded systems: architecture, programming and design", Tata McC	Graw Hill
private limited, second edition.	
4. Frank Vahid, Tony Givargis, "Embedded system design: A unified hardware/softwa	are
introduction", John Wiley and Sons, 2001.	
Course Outcomes**	
After completion of the course student will be able to	
After comprehensive knowledge about ombodded systems, major application area of	∖f
ambedded systems and system components like memory sensors and actuators	71
2 Gain comprehensive knowledge about ARM-32 bit Microcontroller architecture and	d other
internal details	
3 Develop embedded applications on IDE environment and programming in embedded	od (C,
4 Explore one opensource RTOS and demonstrate the basic concents of RTOS	.ч.с.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	grar	n O	utco	ome	s (PC)s)			Program Specific Outcomes (PSOs)		
	1 2 3 4 5 6 7 8 9 10 11 12										1	2	3		
CO1	3	1	1	0	1	1	0	0	0	0	0	0	0	3	0
CO2	3	2	2	0	1	1	0	0	0	0	0	0	0	З	0
CO3	3	3	3	0	3	3	0	0	0	0	0	0	0	3	0
CO4	3	3	3	0	3	2	0	0	0	0	0	0	0	3	0

SUBJECT CODE:		Credits: 03
21UEC610E	Wireless Networks	
L:T:P - 3 : 0 : 0	WITEIESS NEtworks	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

- -

Г

UNIT-I	10 Hrs.
Wireless networks: Wireless network architectures, classification of wireless networks	, wireless
switching technology, wireless communication problems, wireless network reference	e model,
wireless networking issues, wireless networking standards. Wireless Body Area Networ	k(WBAN):
Properties, network architecture, network components, design issues, network protoco	ols, WBAN
Technologies, WBAN Applications. Wireless Personal Area Network(WPAN): Wireless	Personal
Area Network, network architecture, Piconet and Scatternet, WPAN component	s, WPAN
technologies and protocols, WPAN Applications.	40.11
	10 Hrs.
architecture, WLAN standards, WLAN protocols, IEEE 802.11p, WLAN Applications	network
UNIT–III	10 Hrs.
Wireless Metropolitan Area Network (WMAN): Wireless Metropolitan area network	s, WMAN
network architecture , network protocols, broadband wireless networks, WMAN Applica	tions. Ad-
hoc Networks: Introduction, Issues in Ad hoc wireless networks, Ad hoc wireless interne	t.
UNIT–IV	10 Hrs.
MAC Protocols for ad hoc wireless networks: Introduction, issues in designing a MAC pr	otocol for
Ad hoc wireless networks, design goals of a MAC protocol for Ad hoc wireless	networks,
classification of MAC protocols, contention based protocols with reservation me	chanisms.
Contention-based MAC protocols with scheduling mechanism, MAC protocols that use c	lirectional
antennas, Other MAC protocols. Overview of ad hoc routing protocols.	
Reference Books *	
1.Sunilkumar S. Manvi, Mahabaleshwar S. Kakkasageri, "Wireless and Mobile Networks and Protocols" Wiley-India First Edition 2010	:Concepts
2.C.SivaRamMurthy.B.S.Manoi "AdhocwirelessNetworks".PearsonEducation.2 nd Edition. 2	005.
3.KavehPahlavan, P.Krishnamurthy, "Principles of Wireless Networks", Pearson Education	n, First
Edition, 2002	,
4.Yi-BingLin,ImrichChlamtac, "WirelessandMobileNetworkArchitectures", John Wiley, Firs	t Edition,
2001	
5. Marlyn Mallick, "Mobile and Wireless Design Essentials", Wiley, First Edition, 2003	
6.William C. Y. Lee, "Mobile Cellular Telecommunication – Analog and Digital Systems"	, McGraw
Hill, 2 nd Edition, 1995	
Course Outcomes**	
After completion of the course student will be able to	
1. Understand Fundamentals Of Wireless Networks	
2. Analyzeuniquecharacteristicsandvariousdesignissuesinwirelessnetworks	
3. Demonstrate basic skills for different types of wireless networks design	
4. Apply knowledge of various TCP/IP protocols for wireless networking.	

Apply knowledge of various TCP/IP protocols for wireless networking. 4.

Course Outcome	Programme Outcomes (POs) e								Programme Outcomes (POs)														
S	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3									
CO1	3	2	3	2	1	1	1	0	0	0	0	0	1	0	3								
CO2	3	3	2	2	1	1	1	1	0	0	0	0	1	0	3								
CO3	3	2	3	2	1	1	1	0	1	1	1	0	1	0	3								
CO4	3	3	3	2	1	1	2	1	1	1	1	1	1	0	3								

SUBJECT CODE: 21UEC611N		Credits: 03
L:T:P – 3-0-0	Sensor Technology	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	xx Hrs.							
Sensor Fundamentals: Introduction, Definition, Types, and Sensor Characteristics								
Principles of Sensing: Capacitive, Magnetic, Inductive, Resistive, Piezoelectric,								
Piezoresistance, Pyroelectric, Hall effect.								
Interfacing Electronic Circuits: Input Characteristics of Interface Circuits, Amplifiers,								
Excitation Circuits, A to D Converters, Bridge Circuits, Data Transmitters, Batteries for lo	w							
power sensors								
UNIT–II	xx Hrs.							
Overview of Sensor Materials: Sensor materials and material properties, Surface Proce	ssing of							
materials for development of Sensors.								
Sensor Technologies: Micro technology, Micro-Electro-Mechanical Systems Technology	Ι,							
Nanotechnology								
Sensor Applications: Displacement Sensing, level & Velocity Sensors, Accelerometer	ers, Tactile							
Sensors, Pressure Sensors, Temperature Sensors, Comb drive Sensors.								
UNIT–III	xx Hrs.							
Mechanical and Electromechanical sensor: Definition, principle of sensing & tra	nsduction,							
classification. Resistive (potentiometric type): Forms, material, resolution, accuracy,	sensitivity.							
Strain gauge: Theory, type, materials, design consideration, sensitivity, gauge factor, var	iation with							
temperature,								
Capacitive sensors: Stretched diaphragm type: microphone, response characteristics								
Piezoelectric element: piezoelectric effect								
Case Study: Piezoelectric and Capacitive Pressure Sensors, Cantilever based DNA Se	ensor. CNT							
based Pressure Sensor.	,							
UNIT-IV	xx Hrs.							
Interfacing: Communication Basics, parallel, serial and wireless communication, Basi	c protocol							
concept, communication protocols. USB interface. Processor interfacing basics. Cont	roller and							
computer based control implementations. Introduction to wireless sensor network an	d wireless							
network protocols								
Reference Books *								
1 Jacob Fraden "Handbook of Modern Sensors: Physical Design & Applications" AIP Pr	000							
Springer	233,							
2 D. Datranabic "Sonsors & Transducors" DHI Dublication New Dolbi								
2. Erank Vahid Tany Civargis "Embedded system Design" John Wieley & Sons Jng. 2002	1							
5. Flank valid, folly divargis, Ellibedded system Design John vieley& Sons, inc, 2002								
4. H.K.P. Neubert, Instrument transducers, Oxford University press.								
5. E.A. Doebelin, Measurement systems: application & design, MC Graw Hill								
Course Outcomes**								
After completion of the course student will be able to								
1. Use concepts for converting a physical parameter into an electrical quanti	tv							

Use concepts for converting a physical parameter into an electrical quantity
 Identify appropriate sensor materials and technology while designing sensors

- 3. Comprehend working principle of mechanical, strain gauge and capacitive sensors.
 - 4. Set up sensor data acquisition and communication strategies
 - 5. Suggest sensor performance improvement methodologies

Course Outcomes				Pr		Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2			2		2				2	3	1	
CO2	3	1	2			3			2			3	3	2	
CO3	3	3	3		2	2				1		2	3	2	
CO4	3	3	1	2	3	3	3	3		1	2	3	3	3	

SUBJECT CODE:	Image Processing (Open Elective)	Cree	dits: 03								
L:T:P - 3:0:0		CIEM	arks:50								
Total Hours/Week:		SEEM	arks:50								
03	03										
Course Objectives:											
1. To provide the basic l	knowledge on image processing concepts.										
2. To develop the ability to apprehend and implement various image processing algorithms.											
3. To understand variou	s image processing steps and their applications	s in real time.	ic imago								
4. TO facilitate the stude	ents to comprehend the contextual need perta-	ining to variou	is intage								
processing											
	UNIT-I		10 Hrs.								
Introduction to Image processing: Fundamental steps in image processing; Components of image processing system; image sensing and acquisition; sampling and quantization; representation of digital images, image interpolation, Basic relationship between pixels; arithmetic and logic operations.											
	UNIT–II		10 Hrs.								
Sharpening Spatial Filters. Process, Noise Models.	Image Restoration: Image Restoration: Image	e Degradation	/Restoration								
	UNIT–III		10 Hrs.								
Restoration in the Presence Error (Wiener) Filtering, Co processing, colour transform	of Noise Only-Spatial Filtering, Inverse Filterin lor image processing: fundamentals, color monations.	ng, Minimum I odels pseudo	Mean Square colour image								
	UNIT-IV		10 Hrs.								
Image Compression: Funda Golomb coding, arithmeti Applications in satellite, sor	amentals, Image Compression Models and n c coding, LZW coding JPEG, predictive cod ar, radar, medical areas and process industries	nethods: Huff ing. Digital v s.	man coding, vatermarking								
Reference Books *											
 R. C. Gonzalez, R. E. Woods, "Digital Image processing", Addison Wesley/ Pearson education, New Delhi, India, 3rd edition, 2002. A. K. Jain, "Fundamentals of Digital Image processing", Prentice Hall of India, New Delhi, 2nd Edition, 1997. Pafael C. Gonzalez, "Digital Image processing using MATI AP", Pichard F. Woods and 											
Edition, 1997. 3. Rafael C. Gonzalez, "Digit	al Image processing using MATLAB", Richard E	. Woods	and								

Steven Low price Edition, Pearson Education Asia, India, 2nd Edition, 2004.

4. S. Jayaraman, S. Esakkirajan, T.Veerakumar, "Digital Image Processing", Tata McGraw- Hill Education.

Course Outcomes

After completion of the course student will be able to

- 1. Articulate the fundamentals of Digital image processing including the simple image formation and relationship between pixels
- 2. Application of different types of Image transformation techniques, histogram processing and application of spatial filters.
- 3. Analyze the significance of image restoration and processing of colour images.
- 4. Illustrate the image compression like lossy and loss less image compression techniques.

Assignment:

Students are required to develop programs using Matlab. List of programs:

- 1. Image Printing Program Based on Half toning.
- 2. Reducing the Number of Intensity Levels in an Image.
- 3. Zooming and Shrinking Images by Pixel Replication.
- 4. Zooming and Shrinking Images by Bilinear Interpolation.
- 5. Arithmetic Operations.
- 6. Image Enhancement Using Intensity Transformations.
- 7. Histogram Equalization.
- 8. Spatial Filtering.
- 9. Enhancement Using the Laplacian.

Course Articulation Matrix

Course Outcomes		(3/2/:	1 indica	ates s	CC stren	D- PC gth c), PSO of corre 1-Wea	Map elatio ak	opi on	ng) 3- Str	ong, 2-	Medi	um,	
	PC	POs													
	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n	0
1.	2					3							3	З	3
2.			3		2	3	2					2		2	
3.			3						2			3	1		3
4.			3		3				3			3	3	3	3

SUBJECT CODE:		Credits: 03									
	Modeling and Simulation of Engineering	CIE Marke: 50									
L.T.P = 5-0-0 Total Hours (Week: 03	Systems	SEE Marks: 50									
	UNIT-I	xx Hrs.									
Introduction to Systems: Introduction, types, properties of systems, LTI Systems, Stability of											
systems. Non linear systems											
Mathematical Modeling: Introduction, types of modeling, Abstraction, Linearity and											
superposition, balance and conservation laws and the system, boundary approach. Basic system											
elements in mechanical, electrical, fluid, magnetic and thermal systems											
	UNIT–II	xx Hrs.									
Mathematical Modeling	of Basic Engineering Systems: Introduction, D)ifferential equations of									
basic engineering systems	s, Transfer functions, Block diagram algebra, Sigr	nal flow graphs.									
Lumped Parameter Mode	els: Mechanical systems (automobile suspension	system, accelerometer),									
translational, rotational (s	imple rotational system). hydraulic systems (two	o tank hydraulic system),									
thermal systems (simple t	hermal system). Electrical Systems (capacitor mi	icrophone).									
	UNIT–III xx Hrs.										
Analysis of Systems: Introduction, time domain analysis of first order and second order systems,											
Frequency response of Linear Time invariant systems: Bode plots, phase margin and gain margin,											
stability analysis: Routh Hurvitz criteria. Introduction to State space representation of systems											
UNIT-IV XX Hrs.											
iviodeling and Simulation tools: Introduction, familiarization with modeling and simulation											
software, Simulation and analysis of mathematical models developed. Introduction to non-linear											
systems and linearization.	Curve fitting in system modeling.										
1. Mukherjee A. and Karm	nakar R "Modeling and Simulation of Engineer	ing Systems									
through Bond graphs -	Narosa – 2000										
2. IJ Nagrath, M Gopal –	Control Systems Engineering, New Age Internation	onal Publishers, Fifth									
Edition, 2007											
3. O. Beucher and M. We	eks - Introduction to MATLAB and Simulink a pro	ject based									
Approach, Infinity Scier	ice Press LLC, 2006	Name 1000									
4. Chi i song Chen – Linea	r System Theory and Design, Oxford University F	ress, 1999									
5. Ken Dutton, Steve Mor	ripson, Bill Barraciougn – The Art of Control Eng	ineering,									
6 LN Kapur – Mathemati	/ cal modeling. New Age International (P) Itd. New	w Delhi									
7 S C Chance R P Cana	$le = Numerical methods for Engineers \Lambda^{th} Ed. T$	MH New Delhi									
8 Woods Robert L and K	ent I - Modeling and Simulation of Dynamic Sys	stems"- Prentice Hall –									
1997											
9. Frederick C "Modelin	g and Analysis of Dynamic Systems" - Wiley - 20	01 - 3 rd Edition									
Course Outcomes**											
After completion of the co	purse student will be able to										
1. Build a reduced order r	nodel of any engineering system and obtain its r	nathematical model									
2 Visualize various factor	Yisualize various factors to be considered in any engineering system design										

Visualize various factors to be considered in any engineering system design
 Simulate the developed model Use software tools (e.g. SCILAB/XCOS) for modeling,

simulation, and analysis

4. Analyze the system using simulation results

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pr	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	0	0	0	0	0	0	0	0	0	3	2	0
CO2	3	3	3	0	0	1	2	0	0	0	0	0	3	0	0
CO3	3	3	3	0	0	0	0	0	0	0	0	0	3	0	0
CO4	3	3	3	0	0	0	0	0	0	0	0	0	3	0	0

SUBJECT CODE: 21UEC614N	Newsteelers	Credits: 03				
L:T:P – 3-0-0	Nanotecnnology	CIE Marks: 50				
Total Hours/Week: 03		SEE Marks: 50				

UNIT-I	xx Hrs.								
Introduction: The Canvas of nano science and nanotechnology: - Nano and nature, E various technologies of the 20 th century, Beginning of Nano. Introduction to Introduction to fullerenes, Synthesis & purification of fullerenes, Conductivity & superceip Fullerenes, Introduction, synthesis & purification of CNTs, filling & mechanism of grow	volution of Fullerenes: onductivity th of CNTs								
Electronic structure, mechanical and physical properties of CNTs, applications of CNTs.	choren 13,								
	xx Hrs.								
Semiconductor quantum dots: Introduction, synthesis of quantum dots, electronic s	tructure of								
nano crystals. Nano shells: Introduction, types of nano shells, properties and charac	cterization.								
Nano sensors: Introduction, Nano sensors, Nano sensors based on quantum size effects,									
electrochemical sensors, Nano biosensors and smart dust.									
UNIT–III	xx Hrs.								
Molecular Nano machines: Introduction, covalent and non-conventional approaches,	molecular								
motors and machines, molecular devices, single molecule devices. Nano tribology: In	troduction,								
studying tribology the nano scale, nanotribology applications. Case study: design and development									
of CNT based nano piezoresistive pressure sensor, Silicon nano wire- based sensors.									
	xx Hrs.								
Microscopes, optical microscopes for nontechnology, other microscopes, X-ray diffraction, AFM. Societal implications of nano science & nontechnology: From first industrial revolution to the nano revolution, implications of nano science and nontechnology on society, nanotech and war, public perception and involment in the nano discourse, harnessing nontechnology for economic and social development.									
Reference Books *									
 T. Pradeep, "NANO: The Essentials", McGraw-Hill Education, 2007 Edition Rainer Waser, "Nanoelectronics and Information Technology", VCH, 3rdEdition, 2012 Year 	Wiley-								
Course Outcomes**									
 After completion of the course student will be able to Comprehend the fundamentals of nontechnology and develop an unders various nano materials and synthesis technology. Understand quantum dots, nano shells, design and development of Nan 3. Comprehend the knowledge of molecular nano mechanics & Nano tribo 4. Analyze and characterize nano devices, nanostructures and compressocietal implications of nanotechnology. 	standing of to sensors logy ehend the								

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Programme Outcomes (POs) Program Specific

Course													Out	comes (P	SOs)
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	0	0	0	0	0	0	0	3	0	2	3	1	0
CO2	3	0	2	0	2	0	0	0	0	3	0	2	3	2	0
CO3	3	0	2	0	2	0	0	0	0	3	0	2	3	2	0
CO4	3	3	1	2	3	3	3	3	0	2	2	3	3	3	0
BVVS Basaveshwar Engineering College, Bagalkote Department of Electronics and Communication Engineering

Semester End Examination (SEE) Scheme of Evaluation

Semester: VI Course: Mini-Project Code: 21UEC613P Credits:02 Hours/Week:--

Mini-Project is evaluated as per the guidelines of BEC Examination Reforms Policy. It is evaluated for 50 marks by a committee comprising of 1. Mini-Project Coordinator, 2. HoD/Nominee and 3. External Examiner. The details of evaluation are as follows.

Evaluation Criteria	Very poor (2)	Poor (4)	Average (6)	Good (8)	Very good (10)	Total marks	Evaluation Committee
 Generate information through appropriate tests to improve or revise design-GA 	Not able to identify suitable tests to be done Not able to	Able to identify but not able to follow testing procedures Able to identify	Able to follow testing procedures but not able to collect information Able to	Able to collect information but not able to apply it for improvem ent Able to	Able to apply information for the improveme nt Able to		
appropriate procedures, tools and techniques to conduct experiments and collect data - GA	identify tools, techniques and procedures	but not able to conduct experiments	conduct experiment s but not able to follow procedure	follow procedure but not able to collect data	collect data as per the standards	50	Coordinat or + HoD/ Nominee + External Examiner
3. Analyze data for trends and correlations	Not able to understand data	Able to understand but not able to analyze data	Able to analyze data but not able to correlate them	Able to correlate but not able to identify errors and limitations	Able to identify errors and limitations		
4. Deliver effective oral presentations to technical and non- technical	Could not deliver effective presentations.	Could not deliver presentation ,but presentation was	Able to deliver fair presentatio n but notable to answer to the audiences	Deliver effective presentatio ns but able to answer partially to	Deliver effective presentatio n and able to answer all queries of the		

audiences-IA		prepared and attempted.		the audience queries'.	audience.
5. Present	No	Contributions	Contrib ution	A	Contribution
results as a	Contribution	from an	s from an	contributi on	from an
team, with	from an	individual to	individ ual to	From	individual to
Smooth	individual	a team is	a team is	An	a team is
Integration	to a team	minimal	modera te	individual	good and
Of				to a team	results in an
Contributions				is good	Integrated
from all				but not	Team
Individual				Well	presentation.
efforts – GA+				groomed	
IA				in team.	

GA–Group Assessment IA –Individual Assessment

Syllabus for B.E. VII & VIII – Semester (For students admitted to I year in 2021-22)

SUBJECT CODE:		Credits: 03
21UEC701C		
L:T:P - 3 : 0 : 0	wilcrowaves and Antennas	CIEMarks:50
Total Hours/Week: 03		SEEMarks:50

UNIT-I Introduction to microwaves: Microwave frequencies, IEEE microwave frequency bands. Microwave transmission lines and rectangular waveguides: Introduction, transmission line equations, characteristic and input impedances, reflection and transmission coefficients, standing wave and SWR. Introduction to rectangular waveguides, TE and TM modes in rectangular waveguides. Microwave vacuum tube device: Introduction, reflex klystron oscillator (mechanism of oscillation, mode of oscillation, power output and efficiency, mode curve), two cavity klystron amplifier (mechanism of operation).

UNIT-II 10 Hrs. Microwave network theory and passive devices: Introduction, S-matrix representation of multiport network, properties of S-matrix, matched terminations, rectangular to circular waveguide transition, attenuators, precision phase shifter, waveguide tees, E-plane tee, H-plane tee, magictee, applications of magic tee, faraday rotation isolator, four-port circulator, 2-hole directional coupler. **Microwave application**: Microwave radar systems (radar equation, pulsed radar, CW doppler radar, FMCW radar).

Fundamental Parameters of Antennas: Introduction, radiation pattern, radiation power density, radiation intensity, beam width, directivity, antenna efficiency, gain, beam efficiency, bandwidth, polarization, effective height, input impedance, antenna radiation efficiency, maximum directivity and maximum effective area, Friis transmission equation.

Antenna arrays: Array of two point sources, broad side array, end fire array, n-isotropic array, pattern multiplication. binomial and Chebyshev arrays, phased array.

UNIT-IV

10 Hrs.

Antenna Aperture: aperture concept, types of aperture, maximum effective aperture of short dipole and half wave dipole.

Antenna practice: Yagi-Uda antenna, turnstile antenna, log periodic antenna, helical antenna, rhombic antenna, horn antenna, parabolic reflector antennas, micro strip antenna and their feed systems.

Reference Books *

- 1. AnnapurnaDas,SisirK.Das, "MicrowaveEngineering", TMH, 2ndEd, NewDelhi, 2009.
- 2. SamuelY.Liao, "MicrowaveDevicesandCircuits", PearsonEducation, 3rdEd, NewDelhi, 2003.
- 3. JohnD.Krauss,RonaldJ.Marhefka,AhmadSKhan,"AntennasandWave Propagation", McGraw-

UNIT-III

10 Hrs.

10 Hrs.

Hill, 5thEd, New Delhi, 2017.

- 4. ConstantineA.Balanis, "AntennaTheory:AnalysisandDesign", JohnWiley, 4thEd, New Delhi, 2016.
- 5. K.D.Prasad, "Antenna& Wave Propogation", Satyaprakshan, 5thEd, NewDelhi2009.
- 6. MerrillI.Skolnik, "IntroductiontoRadarSystems", TMH, 3rdEd, NewDelhi, 2001.
- 7. P.E.Collins, "AntennasandRadioPropagation", McGraw-Hill, NewDelhi, 1985
- 8. EdwardC.Jordan,KeithG.Balmain, "ElectromagneticwavesandRadiatingsystems",
- 9. PHINewDelhi,1993.

Course Outcomes**

After completion of the course student will be able to

- 1. Acquire the knowledge of transmission line theory, rectangular waveguides and describe microwave vacuum tube device.
- 2. Analyze microwave passive devices with scattering parameters, and apply microwave application in radar systems.
- 3. Compute basic antenna parameters using radiation patterns, analyzeand design antenna arrays.
- 4. Analyze The Importance Of Antenna Aperture, explain the working principle of different antennas and their usage in real time field.

*Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			I	Pro	gram	ime	Out	come	es (P	Os)			Pro Sp Out (F	ogra ecif con 2SOs	im fic nes s)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	0	0	1	1	0	0	0	0	0	3	0	0
CO2	3	2	1	0	0	1	1	0	0	0	0	0	3	0	0
CO3	3	2	2	0	0	1	1	0	0	0	0	0	3	0	0
CO4	3	2	2	0	0	1	1	0	0	0	0	0	3	0	0

SUBJECT CODE:		Credits: 03
21UEC707E	Consider Claused Dessentions	
L:T:P -3-0-0	Speech Signal Processing	CIEMarks:50
Total Hours/Week: 03		SEEMarks:50

UNIT-I	10 Hrs.
Digital representation of speech signal. Waveform representation and parametric representation a	esentation.
Introduction, the process of speech production and classification and basics of phonetic	s, phonetic
description of phonemes, the acoustic theory of speech production, digital models fo vocal tract, radiation, excitation the complete model.	r speech –
UNIT–II	10 Hrs.
Introduction, time dependent processing of speech, short time energy and average r short time average zero crossing rate, voiced/unvoiced/silence detection. Pitch period (Rabiner and Gold method), short time autocorrelation function, short time average difference function, u/v/speech/silence detection.	nagnitude, estimation magnitude
UNIT-III	10 Hrs.
Introduction, definitions and properties of short time Fourier transform (STFT), Fourier interpretation of STFT, linear filtering interpretation of STFT, sampling of STFT, speech a synthesis systems (Vocoders), phase vocoder, channel vocoder.	transform nalysis and
UNIT–IV	10 Hrs.
systems, inverse cepstum transformation, the complex cepstrum of speech, cepstra processing applications of cepstral analysis.	l vocoder,
 Textbook: L.R.RabinerandR.W.Schafer, "DigitalProcessingofSpeechSignals,"Pearson Educ (Asia) Pte. Ltd., 2004. ReferenceBook: D.O'Shaughnessy, "SpeechCommunications:HumanandMachine," UniversitiesI 2001. 	ation Press,
 B.GoldandN.Morgan, "SpeechandAudioSignalProcessing:processingand percessing and music' Pearson Education, 2003. 	ception of
Course Outcomes**	
 After completion of the course student will be able to 1. Explain the speech production and perception mechanism 2. Characterize and analyze speech signals in Time domain 3. Characterize and analyze speech signals in Frequency domain 4. Analyze speech signal using homomorphic transformation and LPC 	

*Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			gram Spe comes (P	ram Specific omes (PSOs)											
	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3
CO1	3	2	1	0	1	1	0	0	0	0	0	0	3	0	0
CO2	3	3	2	0	1	1	0	0	0	0	0	0	3	0	0
CO3	3	2	1	0	1	1	0	0	0	0	0	0	3	0	0
CO4	3	3	1	0	1	1	0	0	0	0	0	0	3	0	0

SUBJECT CODE:		Credits: 03
L:T:P –3-0-0	Machine Learning	CIEMarks:50
Total Hours/Week: 03		SEEMarks:50

UNIT-I	10 Hrs.
Introduction: What is Machine Learning? Python: Introduction, Data Types, Conditional	
statements, loops, functions, scikit-learn.	
Essential Libraries and Tools: Jupyter Notebook, Numpy, Pandas, Scipy, matplotlib	, A First
Application: Classifying Iris Species.	
	10 Hrc
Supervised Learning: Classification and Regression Constalization Overfitting and Lin	dorfitting
Supervised Learning, Classification and Regression, Generalization, Overhung, and On Supervised Machine Learning Algorithms: Some Sample Datasets & Nearest Neighbor	ors Linoar
Models Naive Payes Classifiers, Desicion Trees, Neural Networks (Deen Learning)	JIS, LIIIEdi
Models, Naive Bayes classifiers, Decision frees, Neural Networks (Deep Learning).	
UNIT–III	10 Hrs.
Unsupervised Learning and Preprocessing: Types of Unsupervised Learning, Cha	llenges in
Unsupervised Learning, Preprocessing and Scaling, Dimensionality Reduction, Feature B	Extraction,
and Manifold Learning, Clustering: k-Means Clustering, Agglomerative Clustering	
	10 11.0
UNIT-IV	10 115.
Working with Text Data: Types of Data Represented as Strings Example Application:	g. Sentiment
Analysis of Movie Reviews, Representing Text Data as a Bag of Words: Analysis Bag-of-V	Nords to a
Toy Dataset Bag-of-Words for Movie Reviews Stonwords	
Reference Books *	
Textbooks:	
1. Andreas C. Müller & Sarah Guido, "Introduction to Machine Learning with Pytho	on", Oreilly
Publication, 1 st Edition, 2016	· •
2. Core Python Programming by Dr. R.NageswawaRao, Dreamtech press, 2 nd Edition	2018.
3. Gourishankar S. Veena A, "Introduction to Python Programming", CSC Press, 1 st ed	ition,2019
Reference Books:	
1. Tom Mitchell," Machine Learning", McGraw- Hill, 2 nd Edition, 2013.	
 EthemAlpaydin," Introduction to Machine Learning", MIT press, Cambridge, Mas London, 2nd 	sachusetts,
3. Edition, 2010	
4. MiroslavKubat," An Introduction to Machine Learning", Springer, 2 nd Edition, 2017	

- 5. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006
- 6. Kevin Murphy, "Machine Learning -aProbabilisticPerspective", MITPress, 2012.
- 7. Joachims, "Learning to Classify Text using Support Vector Machine s", Kluwer, 2002
- 8. Ian Good fellow and YoshuaBengio and Aaron Courville, "DeepLearning", AnMIT Press book.

E-Resources:

- 1. Introduction to Machine Learning(IIT Madras)
- https://nptel.ac.in/courses/106106139/
 Introduction to Machine Learning(IIT Kharagpur)https://nptel.ac.in/courses/106105152/

Course Outcomes**

After completion of the course student will be able to

- 1. Explain Various Machine Learning Algorithms.
- 2. Apply machine learning algorithm to solve problems of moderate complexity.
- 3. Analyze performance of algorithms by varying some parameters
- 4. To Formulate Machine Learning Model For The Simple Problem

*Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcome s		Programme Outcomes (POs) Program Speci Outcomes (PS														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1		2	2	2									1		1	
CO2	1	3	3	2	3								2		2	
CO3	1	3	3	3	3								3		3	
CO4	1	3	3	3	3								3		3	

Total Hours/Week: 03		SEE Mark	ks: 50
	UNIT-I		10 Hrs.
Introduction to MEMS Techn microelectronics and MEM Applications of MEMS in var Multiphysics-Multiengineeri optimization, fabrication, rel Scaling issues in microsyste	nology: Basic definitions, history and evolution on IS, microsensors, microactuators and microst ious disciplines. Commercial MEMS products. Ing aspects of MEMS: Introduction to design, iability and packaging of MEMS. Ims, examples and numerical problems based on	f MEMS. Feynr ystems, Types modeling and n scaling laws.	man's vision of MEMS simulation
	UNIT–II		10 Hrs.
Design and Working Princip	les of MEMS: Transduction principles in microd	omain- Biome	dical sensor
& biosensor and DNA sen Actuation using therma forces.Mechanical sensors sensors and actuators – pa DLP mirror; construction an	sor, chemical sensor, optical sensor, pressure al force, shape-memory alloy, piezoeled and actuators – beams and cantilevers, acce rallel plate capacitors, comb drive sensor and a nd working.	sensor, therr ctric and e elerometers. E actuator. Optic	mal sensor. lectrostatic lectrostatic cal MEMS –
	UNIT-III		10 Hrs.
microfluidic systems, therma in microsystems: AFM, SEM Need for simulation, FEM, N COMSOL. AFM as a measure electrothermal actuator, elec	and optical inferometry. Characterization methods when the systems, magnetic domain and electrostatic sy and optical inferometry. Characterization methods design and realization tools – ANSYS/Meement tool in microsystems. Case Studies: Miccostatic actuator.	systems, electris, electri stems. Measur iods. Simulatic ultiphysics, Co rocantilever b	rement tools on of MEMS ventorWare ased sensor
	UNIT–IV		10 Hrs.
Microfabrication/Micromach cleaning, structural and sa etching, Introduction to M methods.	hining: Overview of micro fabrication, silico crificial materials in microfabrication, lithogr EMS fabrication methods like surface, bulk,	on wafer ext aphy, deposit LIGA and wa	raction and ion, doping fer bonding
Reference Books *			
 G. K. Ananthasuresh, systems", Wiley, India N. P. Mahalik, "M EMS Tai, Ran Hsu,"MEMS a James J. Allen, "Micro 2005. Chang Liu, "Foundatio 	K. J. Vinoy, S. Gopalkrishnan, K. N. Bhat, V. H , 2010. 5", Tata McGraw-Hill, 2007. Ind microsystems: design and manufacture", TM D Electro Mechanical System design", CRC Pres ns of MEMS", Pearson education international,	<. Atre, "Micro 1H, 2002. s, Taylor & Fra 2007.	o and smar ancis Group

Micro Electro Mechanical Systems

Credits: 03

CIE Marks: 50

SUBJECT CODE: 21UEC704E

L:T:P – 3-0-0

Stephen D. Senturia, "Microsystem design", Springer International edition, 2001.

Course Outcomes**

After completion of the course student will be able to

- 1. Comprehend the fundamentals of MEMS and expose students to the basic scaling laws as applied to micro domain.
- 2. Design and understand the working principle of various microsensing and actuating devices.
- 3. Mathematically model and simulate the various types of micro-systems
- 4. Comprehend the various steps involved in microfabrication and micromachining of micro devices, structures and systems.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes (POs) Program Specifi Outcomes (PSO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3	1	1	0	0	1	0	0	0	2	0	3	3	0	
CO2	3	3	3	3	0	0	2	0	0	0	3	0	3	3	0	
CO3	3	2	2	2	3	0	0	0	0	0	3	0	3	3	1	
CO4	3	2	2	3	0	0	0	0	0	0	3	0	3	3	0	

SUBJECT CODE: 21UEC718E	VI SI Testing	Credits: 03				
L:T:P – 3:0:0	VLSITESting	CIE Marks: 50				
Total Hours/Week: 40hrs		SEE Marks: 50				

UNIT-I Fault Modelling: Importance of Testing, Testing during the VLSI Lifecycle, Challenges in the VLSI Testing: Test Generation, Fault Models, Levels of Abstraction in VLSI Testing, Historical Review of VLSI Test Technology, Fault and Defect modeling: Functional Faults, Structural Faults, Structural Gate Level Faults: Recognizing Faults, Stuck-Open Faults, Stuck-at-0 Faults, Stuck at-1 Faults, Fault Collapsing.

Fault Simulation and Test Generation: Fault Simulation: Serial, Parallel, Deductive, Concurrent, Combinational Test Generations, ATPG for Combinational Circuits, D-Algorithm, Testability Analysis, SCOAP measures for Combinational Circuits

Design for Testability: Introduction. Testability Analysis, Design for Testability Basics: Ad Hoc Approach, Structured Approach, Scan Cell Designs, Scan Design Rules, Scan Architectures, Scan Design Flow, Special Purpose Scan Designs, RTL Design for Testability.

UNIT-II

UNIT-III

Built-in Self-Test: BIST Design Rules, Test Pattern Generation, Exhaustive Testing, Pseudo-Random Testing, Pseudo-Exhaustive Testing, Delay Fault Testing, Output Response Analysis, Logic BIST Architectures, BIST Architectures for Circuits with and without Scan Chains.

Boundary scan and Core based Testing : Digital Boundary Scan (IEEE Std. 1149.1): Test Architecture and Operations, On-Chip Test Support with Boundary Scan, Board and System-Level Boundary-Scan Control Architectures.

Test Compression and Compaction: Test Stimulus Compression: Code-Based Schemes, Linear-Decompression-Based Schemes, Test **Response** Compaction.

Fault Diagnosis: Dictionary based and Adaptive fault diagnosis.

Reference Books *

Textbooks:

- **1.** Z. Navabi, "Digital System Test and Testable Design", Springer, 2011.
- 2. Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen, "VLSI Test Principles and Architectures", The Morgan Kaufmann, 2013

Course Outcomes**

UNIT-IV

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

After completion of the course student will be able to

- 1. Model different fault models. Simulate faults and generate test patterns for combinational circuits.
- 2. Analysis and design for testability.
- Recognize the BIST techniques for improving testability and understand boundary scanbased test architectures.
- **4.** Analyse and apply the test vector compression techniques for memory reduction and fault Diagnosis.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes	Programme Outcomes (POs)												urse Outcomes Pro					Prog Outc	ram Spo omes (F	ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3					
CO1	1	1	1		3								3							
CO2	1	1	1		3								3							
CO3	1	1	1		3								3							
CO4	1	1	1		3								3							

SUBJECT CODE: 21UEC706E	Advanced Tools for VLSI Design	Credits: 03
L:T:P – 3:0:0	C C	CIE Marks: 50
Total Hours/Week: 40hrs		SEE Marks: 50

UNIT-I	10 Hrs.									
Data Structures and Basic Algorithms: Basic Terminology, Complexity Issues and NP-	hardness Basic									
Algorithms, Basic Data Structures, Graph Algorithms for Physical design										
UNIT–II	10 Hrs.									
Partitioning: Problem Formulation, Classification of Partitioning Algorithms, Group Migration										
Algorithms, Simulated Annealing and Evolution, Other Partitioning Algorithms										
Floor planning and Pin Assignment: Floor planning, Chip planning, Pin Assignment	ent, Integrated									
Approach										
UNIT–III	10 Hrs.									
Placement: Problem Formulation, Classification of Placement Algorithms, Simulation Based Placement Algorithms, Partitioning Based Placement Algorithms, Other Placement Algorithms, Performance Driven Placement, Recent Trends.										
Algorithms, Line-Probe Algorithms, Shortest Path Based Algorithms										
UNIT–IV	10 Hrs.									
Global Routing(Continued): Steiner Tree based Algorithms, Integer Programming Based Approach, Three-Layer Channel Routing Algorithms Clock and Power Routing: Clock Routing, Power and Ground Routing										
Reference Books *										
Textbooks:										
1. Naveed A. Sherwani, "Algorithms For VlsiPhysical Design Automation", Kluwer Publishers	Academic									
 Andrew B. Kahng, Jens Lienig, Igor L. Markov, JinHu, "VLSI Physical Design: Fror Partitioning to Timing Closure", Springer, 2011. 	n Graph									
 H. Yosuff and S.M. Sait, "VLSI Physical Design Automation – Theory and Practic Cambridge India, 2010. 	e",									
4. Sung Kyu Lim, "Practical Problems in VLSI Physical Design Automation", Spring	er India, 2011.									
Reference Books:										
 S. Sridhar, "Design and Analysis of Algorithms", Paperback – OUP, 2014. John Okyere Attia, "PSPICE and MATLAB for Electronics: An Integrated Approace 	h", CRC Press,									
 2010. Ganesh M. Magar, Swati R. Maurya Rajesh K. Maurya, "Graph Theory & Applica Technical Publications, 2016. 	itions",									

Brian Christian and Tom Griffiths, "Algorithms to Live By: The Computer Science of Human Decisions", William Collins, 2017.

Course Outcomes**

After completion of the course student will be able to

- 1. Formulate the graphs for the given problems, Calculate and analyse the computational complexity of physical design algorithms Partition a given design.
- 2. Express and change the floorplans in an abstract manner and use computer algorithms to make large and optimized floorplans
- 3. Make optimized placements on the silicon chip and perform complex routing using algorithms and computer codes.
- 4. Design clock trees to distribute the clock signals on the chip while satisfying various constraints like clock skew and wire length.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes	Programme Outcomes (POs)													ram Spo omes (F	ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	1		3								3		
CO2	1	1	1		3								3		
CO3	1	1	1		3								3		
CO4	1	1	1		3								3		

SUBJECT CODE:		Credits: 03
21UEC702E		
L:T:P -3-0-0	Multimedia Communication	CIEMarks:50
Total Hours/Week: 03		SEEMarks:50

UNIT-I10 Hrs.Introduction to Multimedia: Introduction, Multimedia and hypermedia, World Wide Web,
overview of multimedia software tools, Graphics and Image Data Representations: Graphics image
data types, popular file formats, color in image and video: color science, color models in images,
color models in video.

Fundamental Concepts in Video and Digital Audio: Types of video signals, analog video, digital video, digitization of sound, quantization and transmission of audio. Basics of Digital Audio: Digitization of sound, Musical Instrument Digital Interface, quantization and transmission of audio.

10 Hrs.

10 Hrs.

UNIT-II

UNIT–III									
Lossless compression algorithm: Run-Length coding, variable length coding, dictiona									
coding, arithmetic coding, lossless image compression, Lossy compression algorithm: Qu	antization,								
transform coding, Wavelet-based coding, embedded zero tree of Wavelet coeffi	cients Set								
Partitioning in Hierarchical Trees(SPIHT). Basic Video Compression Techniques: Introduction Video									
Compression, video compression based on motion compensation, search for motion vectors,									
MPEG, Basic Audio Compression Techniques.									

UNIT-IV

Multimedia Networks: Basics of Multimedia Networks, Multimedia Network Communications and Applications: Quality of multimedia data transmission, multimedia over IP, multimedia over ATM networks, transport of MPEG-4, Media-on Demand (MOD).

Reference Books *

Textbook:

1. Ze-NianLi, MarkS.Drew, "Fundamentals of Multimedia", PHI/PEA.

Reference Books:

- 1. Parag Havaldar, Gerard Medioni, "Multimedia Systems", Cengage, 2009.
- 2. ColinMoock, SPDO,"Essentials Action Script3.0", Reilly, 2007.
- 3. Steinmetz, Nahrstedt, "Multimedia Applications", Springer.
- **4.** Chapman, JennyChapmanNigel, "DigitalMultimedia", Wiley Dreamtech.

5. SteveHeath,"Multimedia &CommunicationsTechnology",Elsevier.

Course Outcomes**

After completion of the course student will be able to

- 1. Explain the concepts multimedia information representation and use the different markup language for its communication.
- 2. Explain the needs of video and audio signal processing multimedia communication.
- 3. Apply The different information coding techniques image and video compression techniques
- **4.** Explain The Various Standard Protocols used for multimedia communication.

*Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outco mes		Programme Outcomes (POs)												gram Spe comes (P	cific SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	0	1	0	0	1	0	1	0	0	1	1		1		1
CO2	0	1	0	1	1	0	0	0	1	1	1		1		1
CO3	1	1	0	0	1	0	0	0	0	1	1	1	1	1	1
CO4	1	1	0	0	1	0	1	0	0	1	1		1		1

SUBJECT CODE:	Multirate Signal Processing	Credits: 03
21UEC717E		
L:T:P:-3:0:0		CIE Marks: 50
Hours/Week: 03		SEE Marks: 50

UNIT-	10 Hrs									
Ι										
Fundamentals of multirate systems: Basic multirate operations, interconnection of building										
blocks, polyphase representation, multistage implementation, applications of multirate										
systems, special filters and filter banks, noble identities and their proof.										
UNIT–	10									
II	Hrs									
Multirate filter banks: Maximally decimated filter banks, Errors created in QMF bank,	alias free									
QMF system, power symmetric QMF banks, M channel filter banks, poly-phase repres	sentation,									
perfect reconstruction systems, alias free filter banks, tree structured filter bank	ts, trans-									
multiplexers.										
UNIT–	10									
III	Hrs									
Para-unitary perfect reconstruction filter banks: Lossless transfer matrices, filter bank properties										
induced by para-unitariness, two channel paraunitary lattices, M-channel FIR Para-unit	ary QMF									
banks, transform coding.										
LINIT10										
IV	Hrs									
Linear phase perfect reconstruction QMF banks: Necessary conditions, lattice struction	tures for									
linear phase FIR -PR, QMF banks, formal synthesis of linear phase FIR -PR, QM	F lattice.									
Cosine modulated filter banks: Pseudo QMF bank and its design.										
Reference Books										
1. P. P. Vaidyanathan, – Multirate systems and filter banks , Pea	rson									
Education(Asia) Pvt, Ltd, 2004.										
2. Gilbert Strang and Truong Ngujen, - Wavelets and filter banks , Welle	sley									
Cambridge Press, 1996.										
3. N.J.Fliege, -Multirate Digital Signal Processing II. John Wilev & sons. U	JSA,									
2000.	<i>`</i>									
Course Outcomes**										

After completion of the course student will be able to

- 1. Sample a signal at different rate and do transform domain analysis.
- 2. Design maximally decimated, QMF, polyphase, perfect reconstruction and tree structured

filter banks.

3. Design Para-unitary perfect reconstruction, M-channel FIR para-unitary QMF filter banks.

4. Design linear phase perfect reconstruction, QM, cosine modulated and pseudo QMF filter

banks.

Course Outcomes Programme Outcon						Programme Outcomes (POs)										
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3	
C01	3	3	3	1	2	1	1	1	2	1	-	1	3	1	-	
CO2	3	3	3	2	1	1	1	1	2	1	-	1	3	1	-	
CO3	3	3	3	2	1	1	1	1	2	1	-	1	3	1	-	
CO4	3	2	3	3	2	1	1	1	2	1	-	1	3	1	-	

Course Articulation Matrix

SUBJECT CODE:	Wavelets	Credits: 03
21UEC710E		
L:T:P:-3:0:0		CIE Marks: 50
Hours/Week: 03		SEE Marks: 50

UNIT-	10 Hrs							
I								
Fundamentals of Linear Algebra: Vector spaces, Bases, Orthogonality, Orthonormality,								
Projection, Functions and function spaces, Orthogonal functions, Orthonormal f	unctions,							
Orthogonal basis functions.								
Short Time Fourier Transform (STFT): Limitations of Fourier domain signal pro-	ocessing,							
Signal representation with continuous and discrete STFT, concept of time-frequency re-	solution,							
Resolution problem associated with STFT, Heisenberg's Uncertainty principle a	and time							
frequency tiling, Why wavelet transform?								
Self Study Component: Comparison between STFT and wavelet transform.								
UNIT–	10							
II	Hrs							
Introduction to Wavelet Transform: The origins of wavelets, Wavelets and other wa	velet like							
transforms, History of wavelet from Morlet to Daubechies via Mallat, Different communities								
and family of wavelets, Different families of wavelets within wavelet communities.								
Continuous Wavelet Transform: Wavelet transform-A first level introduction, Continuous								
time-frequency representation of signals, Properties of wavelets used in continuous wavelet								
transform, Continuous versus discrete wavelet transform								
Self Study Component: Wavelet packet decomposition.								
UNIT–	10							
III	Hrs							
Discrete Wavelet Transform: Haar scaling functions and function spaces, Transla	ation and							
scaling of $\phi(t)$, Orthogonality of translates of $\phi(t)$, Function space V0, Finer Haa	r scaling							
functions, Concepts of nested vector spaces, Haar wavelet function, Scaled and transla	ited Haar							
wavelet functions, Orthogonality of $\phi(t)$ and $\psi(t)$, Normalization of Haar bases at	different							
scales, Refinement relation with respect to normalized bases, Support of a wavelet	t system,							
Daubechies wavelets, Plotting the Daubechies wavelets.	Daubechies wavelets, Plotting the Daubechies wavelets.							
Self Study Component: Image compression using wavelets.								
Self Study Component: Image compression using wavelets.								
Self Study Component: Image compression using wavelets. UNIT-	10							
Self Study Component: Image compression using wavelets. UNIT- IV	10 Hrs							
Self Study Component: Image compression using wavelets. UNIT- IV Designing Orthogonal Wavelet Systems-A Direct Approach: Refinement relation f	10 Hrs							
Self Study Component: Image compression using wavelets. UNIT- IV Designing Orthogonal Wavelet Systems-A Direct Approach: Refinement relation f orthogonal wavelet systems, Restrictions on filter coefficients, Condition-1: Unit area	10 Hrs or under							
Self Study Component: Image compression using wavelets. UNIT- IV Designing Orthogonal Wavelet Systems-A Direct Approach: Refinement relation f orthogonal wavelet systems, Restrictions on filter coefficients, Condition-1: Unit area scaling function, Condition-2: Orthonormality of translates of scaling functions, Condi	10 Hrs or under ition-3:							
Self Study Component: Image compression using wavelets. UNIT– IV Designing Orthogonal Wavelet Systems-A Direct Approach: Refinement relation f orthogonal wavelet systems, Restrictions on filter coefficients, Condition-1: Unit area scaling function, Condition-2: Orthonormality of translates of scaling functions, Condition Orthonormality of scaling and wavelet functions, Condition-4: Approximation condition	10 Hrs or under ition-3: ons							

Constraints for Daubechies' 6 tap scaling function. **Self Study Component:** Multi-resolution Analysis (MRA) using wavelets.

Reference Books *

- 1. K. P. Soman, K. I. Rmachandran, N. G. Resmi, "Insight into Wavelets: From Theory to Practice" (Third Edition), PHI Learning Pvt. Ltd., 2010.
- 2. A.N. Akansu and R.A. Haddad, "Multiresolution signal Decomposition: Transforms, Subbands and Wavelets", Academic Press, Oranld, Florida, 1992.
- 3. John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson Prentice Hall, 2007.
- 4. Rafael C. Gonzalez, Richard E. Woods "Digital Image Processing" (Third Edition), Pearson International Edition, 2009.
- 5. C. S. Burrus, Ramose and A. Gopinath, "Introduction to Wavelets and Wavelet Transform", Prentice Hall Inc.

Web links and Video Lectures (e-Resources):

- 1. <u>http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html</u>
- 2. http://www.wavelet.org/
- 3. http://www.math.hawaii.edu/~dave/Web/Amara's%20Wavelet%20Page.html

Course Outcomes**

After completion of the course student will be able to

- 1. Compute STFT and time-frequency resolution.
- 2. Decompose a signal into different bands using different wavelets.
- 3. Plot different wavelets and do analysis.
- 4. Design Daubechies orthogonal wavelet system coefficients.

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3			
CO1	3	3	3	1	2	1	1	1	2	1	-	1	3	1	-			
CO2	3	3	3	2	1	1	1	1	2	1	-	1	3	1	-			
CO3	3	3	3	2	1	1	1	1	2	1	-	1	3	1	-			
CO4	3	2	3	3	2	1	1	1	2	1	-	1	3	1	-			

Course Articulation Matrix

SUBJECT CODE: 21UEC712E	Operating Systems	Credits: 03
L:T:P – 3:0:0	Operating Systems	CIE Marks: 50
Total Hours/Week: 40hrs		SEE Marks: 50

UNIT-I	10 Hrs.
Introduction : What Operating System Do, User View, System View, Operating-Syste Operating-System Operations, Process Management, Memory Management, Storage M Protection and Security	m Structure, Aanagement,
System Structures: Operating-System Services User and Operating-System Interface. S	vstem Calls
Types of System Calls, System Programs, Operating-System Design and Implementation	. Operating
System Structure.	,
Process Management: Process Concept, Process Scheduling, Operations on Processes,	Inter-process
Communication.	
Multithreaded Programming: Overview, Multicore Programming, Multithreading Mod	els.
UNIT–II	10 Hrs.
Process Scheduling: Basic Concepts, Scheduling Criteria, Scheduling Algorithms, Thread	Scheduling
Process Synchronization: Background, The Critical-Section Problem, Peterson	's Solution,
Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization	on, Monitors.
Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlock	ks, Deadlock
Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock.	
UNIT–III	10 Hrs.
Virtual-Memory Management: Background, Demand Paging, Page Replacement, A Frames. File system: File Concept, Access Methods, Directory and Disk Structure, File System Mounting, Fi	Allocation of le Sharing.
UNIT-IV	10 Hrs.
Implementing File-Systems: File-System Structure, File-System Implementation	, Directory
Implementation, Allocation Methods, Free-Space Management.	, ,
Mass-Storage Structure: Overview of Mass-Storage Structure. Disk Structure, Disk Attac	chment, Disk
Scheduling, Disk Management, Swap-Space Management.	
System Protection and Security: Goals of Protection, Principles of Protection, Domain of	f Protection,
Access Matrix, The Security Problem, Program Threats.	
Reference Books *	
Textbook:	
1 Abraham Silberschatz Peter B Galvin Greg Gagne "Onerating System Concen	ts" 9 th

edition, Wiley India, 2016.

Reference Books:

- 1. Dhananjay M. Dhamdhere," **Operating Systems-A Concept Based Approach**", 3rd edition, Tata McGraw-Hill, 2012.
- 2. P.C.P.Bhatt," **Operating Systems**",2nd edition, PHI,2007.
- 3. William Stallings," **Operating Systems: Internals and Design Principles**",6th edition, Pearson, 2009.

Course Outcomes**

After completion of the course student will be able to

- 1. Describe the operating system structure, operations, services, design, thread and various features of process including scheduling, creation, termination, communication and explore inter process communication.
- 2. Discuss various CPU scheduling algorithms, several tools used to solve process synchronisation problems and also number of different methods for preventing or avoiding deadlocks.
- 3. Explore various memory management techniques and aspects related to file system.
- 4. Describe file system implementation, mass storage structure and protection

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes (POs)										Program Specific			
														omes (i	-308)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	-	3	2							3		
CO2	3	2	3	-	3	1							3		
CO3	3	2	3	-	3	-							3		
CO4	2	1	1	-	3	1							3		

SUBJECT CODE: 21UEC715E		Credits: 03
L:T:P – 3:0:0	IC lechnology	CIE Marks: 50
Total Hours/Week: 40hrs		SEE Marks: 50

UNIT-I	10 Hrs.
Crystal Growth and Silicon Wafer Preparation: Introduction, Semiconductor Silicon Preparation,	Silicon Wafer
Preparation Stages, Crystalline Materials, Unit Cells, Poly and Single Crystals, Crystal Orient	ation, Crystal
Growth, Czochralski Method, Liquid-Encapsulated Czochralski, Float Zone, Crystal and Wafer C	Quality, Point
Defects, Dislocations, Growth Defects, Wafer Preparation, End Cropping, Diameter Grinding,	, Crystal
Orientation, Conductivity, and Resistivity Check, Grinding Orientation Indicators, Wafer Slicing,	Wafer
Marking, Rough Polish, Chemical Mechanical Polishing, Backside Processing, Double-Sided Po	Edge, Slishing
Grinding and Polishing, Wafer Evaluation, Oxidation, Packaging, Wafer Types and Uses.	
Overview of Wafer Fabrication and Packaging: Introduction, Goal of Wafer Fabrication, Wafer	Terminology,
Chip Terminology, Basic Wafer-Fabrication Operations, Layering, Patterning, Circuit Design, Retic	le and Masks,
Doping, Heat Treatments, Example Fabrication Process, Wafer Sort, Packaging.	
Contamination Control: Introduction, The Problem Contamination-Caused Problems, Co	ontamination
Sources, General Sources Air Clean Air Strategies Cleanroom Workstation Strategy Tu	nnel or Bay
Concept Micro-and Mini-Environments Temperature, Humidity, and Smog. Cleanroom C	Construction,
Construction Materials Cleanroom Elements Personnel-Generated Contamination Pro	ocess Water
Process Chemicals Equipment. Cleanroom Materials and Supplies, Cleanroom Mainten	ance, Wafer
Surface Cleaning, Particulate Removal Wafer Scrubbers High-Pressure Water Clean	ing Organic
Residues Inorganic Residues Chemical-Cleaning Solutions General Chemical Clean	aning Oxide
Layer Removal Room Temperature and Ozonated Chemistries Water Rinsing Drying	Techniques
Contamination Detection	
UNIT-II	10 Hrs.
UNIT–II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier	10 Hrs. Surface
UNIT–II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation	10 Hrs. Surface
UNIT–II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo	10 Hrs. Surface on ontal Tube
UNIT–II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap	10 Hrs. Surface on ontal Tube pid Thermal
UNIT–II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer
UNIT–II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace
UNIT–II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and Cleanliness Thermal Nitridation.	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace
UNIT-II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and Cleanliness Thermal Nitridation. The Ten-Step Patterning Process-Surface Preparation to Exposure: Introduction, Ove	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace
UNIT-II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and Cleanliness Thermal Nitridation. The Ten-Step Patterning Process-Surface Preparation to Exposure: Introduction, Over Photomasking Process, Ten-Step Process, Basic Photoresist Chemistry, Photoresist,	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace erview of the Photoresist
UNIT-II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and Cleanliness Thermal Nitridation. The Ten-Step Patterning Process-Surface Preparation to Exposure: Introduction, Over Photomasking Process, Ten-Step Process, Basic Photoresist Chemistry, Photoresist, Performance Factors, Resolution Capability Adhesion Capability Process, Latitude Pinh	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace erview of the Photoresist noles Particle
UNIT-II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and Cleanliness Thermal Nitridation. The Ten-Step Patterning Process-Surface Preparation to Exposure: Introduction, Ove Photomasking Process, Ten-Step Process, Basic Photoresist Chemistry, Photoresist, Performance Factors, Resolution Capability Adhesion Capability Process,Latitude Pinh and Contamination Levels Step Coverage Thermal Flow Comparison of Positive ar	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace erview of the Photoresist noles Particle nd Negative
UNIT-II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and Cleanliness Thermal Nitridation. The Ten-Step Patterning Process-Surface Preparation to Exposure: Introduction, Ove Photomasking Process, Ten-Step Process, Basic Photoresist Chemistry, Photoresist, Performance Factors, Resolution Capability Adhesion Capability Process,Latitude Pinh and Contamination Levels Step Coverage Thermal Flow Comparison of Positive ar Resists. Physical Properties of Photoresists, Solids Content Viscosity Surface Tension	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace erview of the Photoresist noles Particle nd Negative
UNIT-II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidatio Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and Cleanliness Thermal Nitridation. The Ten-Step Patterning Process-Surface Preparation to Exposure: Introduction, Ove Photomasking Process, Ten-Step Process, Basic Photoresist Chemistry, Photoresist, Performance Factors, Resolution Capability Adhesion Capability Process,Latitude Pinh and Contamination Levels Step Coverage Thermal Flow Comparison of Positive ar Resists. Physical Properties of Photoresists, Solids Content Viscosity Surface Tensico Refraction Storage and Control of Photoresists Light and Heat Sensitivity Viscosity Shalf Life Cleanlinese Photomesing Process Surface Preparation Control of Photoresists Light and Heat Sensitivity Viscosity	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace erview of the Photoresist noles Particle nd Negative on Index of
UNIT-II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidatio Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Ray Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and Cleanliness Thermal Nitridation. The Ten-Step Patterning Process-Surface Preparation to Exposure: Introduction, Ove Photomasking Process, Ten-Step Process, Basic Photoresist Chemistry, Photoresist, Performance Factors, Resolution Capability Adhesion Capability Process,Latitude Pinh and Contamination Levels Step Coverage Thermal Flow Comparison of Positive ar Resists. Physical Properties of Photoresists, Solids Content Viscosity Surface Tensico Refraction Storage and Control of Photoresists Light and Heat Sensitivity Viscosity Shelf Life Cleanliness. Photomasking Processes Surface Preparation to Exposure	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace erview of the Photoresist noles Particle on Sensitivity s, Surface Driming
UNIT-II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidation Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and Cleanliness Thermal Nitridation. The Ten-Step Patterning Process-Surface Preparation to Exposure: Introduction, Over Photomasking Process, Ten-Step Process, Basic Photoresist Chemistry, Photoresist, Performance Factors, Resolution Capability Adhesion Capability Process, Latitude Pinh and Contamination Levels Step Coverage Thermal Flow Comparison of Positive ar Resists. Physical Properties of Photoresists, Solids Content Viscosity Surface Tensic Refraction Storage and Control of Photoresists Light and Heat Sensitivity Viscosity Shelf Life Cleanliness. Photomasking Processes Surface Preparation to Exposure Preparation, Particle Removal Dehydration Baking Wafer Priming Spin Priming Vapor	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace erview of the Photoresist noles Particle nd Negative on Index of y Sensitivity c, Surface r Priming,
UNIT–IIOxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrierDielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal OxidationMechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods HorizeFurnaces Temperature Control System Source Cabinet Vertical Tube Furnaces RapProcessing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, PreoxidCleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide andCleanliness Thermal Nitridation.The Ten-Step Patterning Process-Surface Preparation to Exposure: Introduction, OverPhotomasking Process, Ten-Step Process, Basic Photoresist Chemistry, Photoresist,Performance Factors, Resolution Capability Adhesion Capability Process, Latitude Pinhand Contamination Levels StepCoverage Thermal Flow Comparison of Positive arResists. Physical Properties of Photoresists, Solids ContentViscosity Surface TensicRefraction Storage andControl of Photoresists Light and Heat Sensitivity ViscosityShelf Life Cleanliness. Photomasking Processes Surface Preparationto ExposurePreparation, Particle Removal Dehydration Baking Wafer Priming SpinPriming VaporPhotoresist Application (Spinning). The Static Dispense Spin Process Dynamic Dispense NDispensing Manual Spinners Automatic Spinners Edge Read Removal Backride Conting	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace erview of the Photoresist noles Particle nd Negative on Index of y Sensitivity o, Surface r Priming, Moving-Arm
UNIT-II Oxidation: Introduction, Silicon Dioxide Layer Uses, Surface Passivation DopingBarrier Dielectric Device Dielectric (MOS Gates) Device Oxide Thicknesses, Thermal Oxidatio Mechanisms, Influences on the Oxidation Rate Thermal Oxidation Methods Horizo Furnaces Temperature Control System Source Cabinet Vertical Tube Furnaces Rap Processing High-Pressure Oxidation Oxidant Sources, Oxidation Processes, Preoxid Cleaning, Postoxidation Evaluation, Surface Inspection Oxide Thickness Oxide and Cleanliness Thermal Nitridation. The Ten-Step Patterning Process-Surface Preparation to Exposure: Introduction, Ove Photomasking Process, Ten-Step Process, Basic Photoresist Chemistry, Photoresist, Performance Factors, Resolution Capability Adhesion Capability Process,Latitude Pinh and Contamination Levels Step Coverage Thermal Flow Comparison of Positive ar Resists. Physical Properties of Photoresists, Solids Content Viscosity Surface Tensic Refraction Storage and Control of Photoresists Light and Heat Sensitivity Viscosit; Shelf Life Cleanliness. Photomasking Processes Surface Preparation to Exposure Preparation, Particle Removal Dehydration Baking Wafer Priming Spin Priming Vapor Photoresist Application (Spinning).The Static Dispense Spin Process Dynamic Dispense N Dispensing Manual Spinners Automatic Spinners Edge Bead Removal Backside Coating.	10 Hrs. Surface on ontal Tube pid Thermal ation Wafer Furnace erview of the Photoresist noles Particle on Index of y Sensitivity s, Surface r Priming, Moving-Arm

Soft Bake, Convection Ovens Manual Hot Plates In-Line, Single-Wafer Hot Plates Moving-BeltHot Plates Moving-Belt Infrared Ovens Microwave Baking Vacuum Baking, Alignment and Exposure, Alignment and Exposure Systems Exposure Sources Alignment Criteria Aligner Types Post exposure Bake, Advanced Lithography.

The Ten-Step Patterning Process-Developing to Final Inspection: Introduction, Development Positive Resist Development Negative Resist Development Wet Development Processes Dry (or Plasma) Development, Hard Bake, Hard-Bake Methods Hard-Bake Process Develop Inspect Develop Inspect Reject Categories Develop Inspect Methods Causes for Rejecting at the Develop Inspection Stage. Etch, Wet Etching, Etch Goals and Issues Incomplete Etch Overetch and Undercutting

Selectivity Wet-Spray Etching Silicon Wet Etching Silicon Dioxide Wet Etching Aluminum-Film Wet Etching Deposited-Oxide Wet Etching Silicon Nitride Wet Etching Vapor Etching. Dry Etch, Plasma Etching Etch Rate Radiation Damage Selectivity Ion-Beam Etching Reactive Ion Etching. Resist Effects in Dry Etching, Resist Stripping, Wet Chemical Stripping of Nonmetallized Surfaces Wet Chemical Stripping of Metalized Surfaces Dry Stripping Post–Ion Implant and Plasma Etch Stripping, New Stripping Challenges Final Inspection Mask Making

Doping: Introduction, The Diffusion Concept, Formation of a Doped Region and Junction, The N-P Junction Doping Process Goals Graphical Representation of Junctions Concentration versus Depth Graphs Lateral Diffusion, Same-Type Doping Diffusion, Process Steps Deposition, Lateral Diffusion Same-Type Doping

UNIT–IV

10 Hrs.

Dopant Sources Drive-In Oxidation, Oxidation Effects Introduction to Ion Implantation Concept of Ion Implantation. Ion-Implantation System, Implant Species Sources. Ionization Chamber Mass Analyzing or Ion Selection Acceleration Tube Wafer Charging Beam Focus Neutral Beam Trap Beam Scanning EndStation and Target Chamber Ion-Implant Masks Dopant Concentration in Implanted Regions Crystal Damage Annealing and Dopant Activation Channeling Evaluation of Implanted Layers Uses of Ion Implantation. The Future of Doping.

Layer Deposition: Introduction, Film Parameters, Chemical Vapor Deposition Basics, Basic CVD System Components CVD Process Steps CVD System Types, Atmospheric-Pressure CVD Systems Horizontal-Tube Induction-Heated APCVD Barrel Radiant-Induction-Heated APCVD Pancake Induction-Heated APCVD Continuous Conduction-Heated APCVD Horizontal Conduction-Heated APCVD Low-Pressure Chemical Vapor Deposition Horizontal Conduction-Convection-Heated LPCVD Ultra-High Vacuum CVD Plasma-Enhanced CVD (PECVD) High-Density Plasma CVD Atomic Layer Deposition Vapor-Phase Epitaxy Molecular Beam Epitaxy Metalorganic CVD Deposited Films Deposited Semiconductors Epitaxial Silicon Polysilicon and Amorphous Silicon Deposition SOS and SOI Gallium Arsenide on Silicon Insulators and Dielectrics Silicon Dioxide Doped Silicon Dioxide Silicon Nitride High-k and Low-k Dielectrics Conductors Metallization: Introduction, Deposition Methods Single-Layer Metal Systems Multilevel Metal Schemes Conductors Materials Aluminum Aluminum-Silicon Alloys Aluminum-Copper Alloy Barrier Metals Refractory Metals and Refractory Metal Silicides Plugs Sputter Deposition Copper Dual-Damascene Process Low-k Dielectric Materials The Dual-Damascene Copper Process Barrier or Liner Deposition Seed Deposition Electrochemical Plating Chemical-Mechanical Processing CVD Metal Deposition Doped Polysilicon CVD Refractory Deposition Metal-Film Uses MOS Gate Capacitor Electrodes Backside Metallization Vacuum Systems Dry Mechanical Pumps and Turbomolecular Hi-Vac Pumps.

Reference Books *

Text Books

1. Peter Van Zant, Microchip Fabrication, A Practical Guide to Semiconductor Processing, Sixth Edition, McGraw Hill

Reference Books

- 1. S.K.Gandhi, VLSI Fabrication principles, Wiley.
- 2. S.M. Sze, VLSI Technology, II edition, McGraw Hill.
- 3. W.R. Runyan, Silicon Semiconductor Technology, McGraw Hill

Course Outcomes**

After completion of the course student will be able to

- 1. Understand the basic steps of fabrication, wafer preparation, Crystal growth and packaging.
- 2. Understands the effect of contaminations on device processing, device performance.
- Understands the uses of formation and process of silicon dioxide growth, Photoresist, wet etching and dry etching
- **4.** To learn different types oxidation such as Chemical vapor Deposition, and LPCVD of poly silicon. Oxidation, Kinetics of oxidation.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes	Programme Outcomes (POs)												Irse Outcomes				Prog Outc	ram Sp omes (I	ecific PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3				
CO1	3	3	2	-	2	2	-	-	-	-	-	-							
CO2	3	2	3	-	2	1	-	-	-	-	-	-							
CO3	3	2	3	-	3	-	-	-	1	-	-	-							
CO4	2	1	1	-	2	1	-	-	1	-	-	1							

SUBJECT CODE: 21UEC705E	Satellite Communication	Credits: 03			
L:T:P -3-0-0		CIEMarks:50			
Total Hours/Week: 03		SEEMarks:50			

UNIT-I	10 Hrs.							
Overview of Satellite Systems: Frequency Allocations for Satellite Services. IN	TELSAT 4,							
U.S.Domsats 9 ,Polar Orbiting Satellites 12,Argos System 18, Cospas-Sarsat.								
Orbits and Launching Methods: Kepler's First Law, Kepler's Second Law, Kepler's Third Law, Definitions of Terms for Earth-Orbiting Satellites, Orbital Elements, Apogee and Perigee Heights, Orbit Perturbations, The subsatellite point, Predicting satellite position, Local Mean Solar Time and Sun-Synchronous Orbits, Problems. Launches and Launch Vehicles, Expendable Launch Vehicles (ELVs),Placing Satellites into Geostationary Orbit, Orbital Effects in Communications Systems Performance.								
UNIT–II	10 Hrs.							
 Geostationary Orbit. Antenna Look Angles, The Polar Mount Antenna, Limits of Vis Geostationary Orbits, Earth Eclipse of Satellite, Sun Transit Outage, Problems. RadioWavePropagation:AtmosphericLosses,IonosphericEffects,RainAttenuation,Other Propagation Impairments, Polarization: Antenna Polarization, Polarization of Satellite Signals Cross-Polarization Discrimination, Ionospheric Depolarization, Rain Depolarization 	zation, Ice							
UNIT–III	10 Hrs.							
The Space Segment: The Power Supply, Attitude Control, Spinning Satellite st	abilization,							
Momentum Wheel stabilization, Station Keeping, Thermal Control,	TT&C							
Subsystem, Transponders, The wideband receiver, The input demultiplexer, $^{-}$	The power							
amplifier Communications Subsystems: Description of the Communications System, Tra	nsponders,							
Satellite Antennas, Basic Antenna Types and Relationships, Example Global Beam Antenr	าa Example							
Regional Coverage Antenna, Satellite Antennas in Practice, Equipment Reliability and Sp	oace							
UNIT–IV	10 Hrs.							
Low Earth Orbit and Non-Geostationary Satellite Systems: Orbit Considerations,	Coverage							
Frequency & Considerations, Delay Throughput Considerations, System Cons	siderations							

Operational NGSO Considerations Designs,

Satellite Navigation and the Global Positioning System:Radio and Satellite Navigation, GPS Position Location Principles, GPS Receivers and Codes, Satellite Signal Acquisition, GPS NavigationMessage,GPSSignalLevels,TimingAccuracy,GPSC/ACodeAccuracy, Differential GPS.

Reference Books *

Textbook:

1. DennisRoddy, "Satellite Communications", 4thedition, McGraw-Hill International Edition, 2010.

ReferenceBooks:

- 1. TimothyPratt,CharlesBostianandJeremyAllnutt,"SatelliteCommunications",2nd edition, John Wiley & Sons, 2003.
- 2. WilburL.Pritchard,Hendri.Suyderhoud,RoberA.Nelson,"SatelliteCommunication System Engineering", Prentice Hall, Second edition 1993.

Course Outcomes**

After completion of the course student will be able to

- 1. How to describe the motion of satellite in the orbit.
- 2. Describe the concepts of subsystems, link design, rain fading and link availability.
- 3. Explain modulation techniques and the performance of satellite communication systems
- 4. Analyze the design requirements and the performance of satellite communication systems.

*Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcome s		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	1	0	0	0	0	0	0	0	0	0	3	0	0	
CO2	3	2	1	0	0	0	0	0	0	0	0	0	3	0	0	
CO3	3	2	1	0	0	0	0	0	0	0	0	0	3	0	0	
CO4	3	2	1	0	0	0	0	0	0	0	0	0	3	0	0	

SUBJECT CODE:		Credits: 03
21UEC709C	Human Descurse Management	
L:T:P – 3-0-0	Human Resource Management	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

Course Objectives: The objectives of this course are to:

- 1. **Examine** the fundamental principles of Human Resource Management and its evolving role in modern business environments, focusing on the functions of HRM and effective procurement strategies
- 2. **Evaluate** training and development methods, performance appraisal techniques, and career development strategies in human resource management, emphasizing their impact on organizational effectiveness.
- 3. **Analyze** variable compensation structures also examining the importance of industrial relations and collective bargaining processes in maintaining a harmonious work environment.
- 4. Examine the complexities of International Human Resource Management (IHRM) and its impact on global business operations, focusing on international staffing, compensation strategies, and labor relations.

UNIT-I								
Introduction: Nature of Human Resource Management (HRM), importance of human resource management, functions of human resource management, The changing environment of HRM and role of HRM in changing business scenario. Procurement: Job, job analysis, job description and job specifications, Man power Planning demand and supply forecasting, recruitment, methods of recruitment, Employees testing and selection, types of psychological tests and interviews, placement and induction.								
UNIT–II	10 Hrs.							
Development: Operative training and management development, methods of training and development. Performance Appraisal: Traditional and modern Methods. Career Development: career anchors, career development programme and the modern career problems. Compensation: Factor affecting compensation policy, job evaluation, methods of job evaluation.								
Performance Appraisal: Traditional and modern Methods. Career Development: career development programme and the modern career problems. Compensation: Fac compensation policy, job evaluation, methods of job evaluation.	eer anchors, tor affecting							

Variable Compensation: Individual & group, supplementary compensation-fringe benefits and current trends in compensation. Integration: Human relation, importance of industrial relations, causes and effects of Industrials disputes, Machinery for settlement of industrial disputes in India, Role of trade unions in maintaining relations. Collective Bargaining: concept, features, process and advantages. Maintenance and separation: Employee safety, health and welfare, Provisions under factory Act, 1948, Turnover, Retirement and Layoff.

UNIT–IV

10 Hrs.

International HRM: The growth of international business, HR and the international business challenge, effect of inter country difference on HRM, international staffing, international compensation and appraisal, international labor relations and Information Technology and HR.

Reference Books *

Textbooks :

- 1. Flippo Edwin B, "Personnel Management", 6th Edition, McGraw Hills 2000.
- 2. Dresler Garry, "Human Resource Management", 8th Edition, Pearson Education, New Delhi 2002.

Reference Book:

1. Memoria C B, "Personnel Management (Management of HRM)", Himalaya Publication, New Delhi 1999.

Course Outcomes**

A student who successfully completes this course should be able to:

- 1. Analyze job roles and specifications, conduct manpower planning, and effective recruitment and selection methods, including various psychological tests and interviews
- 2. Compare traditional and modern performance appraisal methods, design effective training and development programs, and assess compensation policies and job evaluation methods
- 3. **Evaluate** compensation trends and fringe benefits, **assess** the role of trade unions in industrial relations, and effective collective bargaining strategies to address workplace issues
- **4. Analyze** the influence of inter-country differences on HR practices and **design** effective international HR strategies that address staffing, compensation, and labor relations challenges

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes (POs)											Pro Sp Out (F	Program Specific Outcomes (PSOs)		
	а	b	с	d	e	f	g	h	i	j	k	Ι	m	n	0	

CO1: Analyze job roles and specifications, conduct manpower planning, and effective recruitment and selection methods, including various psychological tests and interviews	0	0	0	0	0	3	3	3	3	3	3	3	0	0	0
CO2: Compare traditional and modern performance appraisal methods, design effective training and development programs, and assess compensation policies and job evaluation methods	0	0	0	0	0	3	3	3	3	3	3	3	0	0	0
CO3: Evaluate compensation trends and fringe benefits, assess the role of trade unions in industrial relations, and effective collective bargaining strategies to address workplace issues	0	0	0	0	0	3	3	3	3	3	3	3	0	0	0
CO4: Analyze the influence of inter- country differences on HR practices and design effective international HR strategies that address staffing, compensation, and labor relations challenges.	0	0	0	0	0	3	3	3	3	3	3	3	0	0	0